期刊文献+
共找到1,522篇文章
< 1 2 77 >
每页显示 20 50 100
Elevating Lithium and Sodium Storage Performance Through the Synergistic Integration of ZnS and Sulfurized Polyacrylonitrile Hybrid Anode Materials
1
作者 Ying Liu Mingxu Li +4 位作者 Dirfan Zabrian Dong-Ho Baek Hyun Woo Kim Jae-Kwang Kim Jou-Hyeon Ahn 《Energy & Environmental Materials》 2025年第4期95-107,共13页
High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanopartic... High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanoparticles serve as catalytic agents,significantly enhancing conductivity,shortening diffusion paths,and accelerating reaction kinetics.Simultaneously,the sulfurized polyacrylonitrile fibers form a three-dimensional matrix that not only provides a continuous network for rapid electron transfer but also prevents zinc sulfide nanoparticle aggregation and mitigates volume changes during charge-discharge cycles.Moreover,the heterointerface structure at the junction of zinc sulfide nanoparticles and the sulfurized polyacrylonitrile matrix increases the availability of active sites and facilitates both ion adsorption and electron transfer.As an anode material for lithium-ion batteries,the zinc sulfide/sulfurized polyacrylonitrile hybrid demonstrates a high reversible capacity of 1178 mAh g^(-1)after 100 cycles at a current density of 0.2 A g^(-1),maintaining a capacity of 788 mAh g^(-1)after 200 cycles at 1 A g^(-1).It also exhibits excellent sodium storage capabilities,retaining a capacity of 625 mAh g^(-1)after 150 cycles at 0.2 A g^(-1).Furthermore,ex-situ X-ray photoelectron spectroscopy,X-ray diffraction,7Li solid-state magic angle spinning nuclear magnetic resonance,and in situ Raman are employed to investigate the reaction mechanisms of the zinc sulfide/sulfurized polyacrylonitrile hybrid anode,providing valuable insights that pave the way for the advancement of hybrid anode materials in lithium-ion batteries and sodium-ion batteries. 展开更多
关键词 high current density hybrid anode material rechargeable Li-ion and Na-ion batteries sulfurized polyacrylonitrile zinc sulfide
在线阅读 下载PDF
Efficiency improvement for post-sulfurized CIGS solar cells enabled by in situ Na doping
2
作者 Zeran Gao Yuchen Xiong +7 位作者 Jiawen Wang Shanshan Tian Wanlei Dai Haoyu Xu Xinzhan Wang Chao Gao Yali Sun Wei Yu 《Journal of Energy Chemistry》 2025年第2期324-332,I0007,共10页
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are... Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process. 展开更多
关键词 CIGS SULFURIZATION In situ doping DEFECT CBO
在线阅读 下载PDF
Cobalt coordination with pyridines in sulfurized polyacrylonitrile cathodes to form conductive pathways and catalytic M-N4S sites for accelerated Li-S kinetics 被引量:2
3
作者 Amir Abdul Razzaq Ganwen Chen +9 位作者 Xiaohui Zhao Xietao Yuan Jiapeng Hu Ziwei Li Yufeng Chen Jiabin Xu Rahim Shah Jun Zhong Yang Peng Zhao Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期170-178,I0005,共10页
Sulfurized polyacrylonitrile(SPAN)represents a unique class of cathode material for lithium sulfur(Li-S)batteries as it eradicates the polysulfides shuttling issue in carbonate-based electrolyte.However,due to the ess... Sulfurized polyacrylonitrile(SPAN)represents a unique class of cathode material for lithium sulfur(Li-S)batteries as it eradicates the polysulfides shuttling issue in carbonate-based electrolyte.However,due to the essential chemical S-linking and organic nature of SPAN,the active mass percentage and rate capability are two bottleneck issues preventing its ultimate deployment outside of laboratories.In the current work,aiming to endow both the charge conductivity and catalytic activity to SPAN for maximizing the redox kinetics of S conversion,a freestanding nanofibrous SPAN cathode embedding conductive CNTs and atomically dispersed Co centers is fabricated via multivariate electrospinning.While the CNTs enable dramatically enhancing the fiber conductivity and generating mesoscopic porosity for facilitating charge and mass transportation,the cross-linking of SPAN by Co-N_(4) S motifs creates extra charge conduction pathways and further serves as the catalytic active sites for expediting redox S conversion.As a result,an extraordinary Li-SPAN performance is achieved with a high specific capacity up to 1856 mAh g^(-1)@0.2 C,a superb rate capability up to 10 C,and an ultra-long battery life up to 1500 cycles@1 C.Consequently,our study here provides insights into the adoption of coordination chemistry to maximize the sulfur utilization by ensuring a more complete redox conversion from SPAN to Li2 S,and vice versa. 展开更多
关键词 sulfurized polyacrylonitrile ELECTROSPINNING COBALT Coordination chemistry Lithium sulfur batteries
在线阅读 下载PDF
Preparation and Action Mechanism of Inclusion Complex of/βcyelodextrin and Sulfurized Isobutylene as Additives in Solution of Polyethylene Glycol-600 被引量:2
4
作者 GUAN Jiju XU Xuefeng +1 位作者 HU Jiande PENG Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期859-867,共9页
The inclusion complex of fl-cyclodextrin(β-CD)and sulfurized isobutylene(T321)was prepared with a co-precipitation method.The tribological properties of the complex with different concentrations were investigated by ... The inclusion complex of fl-cyclodextrin(β-CD)and sulfurized isobutylene(T321)was prepared with a co-precipitation method.The tribological properties of the complex with different concentrations were investigated by a four-ball tester in the solution of polyethylene glycol-600(PEG-600).The experimental results suggest that the complex exhibits better anti-friction and anti-wear properties than fl-CD under different load conditions.The tribo-system shows the least friction coefficient when the concentration of the complex is 0.8%.During the friction process,the complex was decomposed into various molecular fragments and the T321 molecules were released onto the friction interface to provide effective lubrication.The XPS analytical results on the worn surfaces reveal that sulfide film formed by the released T321 plays a major role,and the iron alkoxide and carbon deposition films formed by theβ-CD fragments have better anti-friction effect on the sulfide film surface.The interactions of different films result in the formation of a mixed boundary lubrication film. 展开更多
关键词 tribological properties Β-CYCLODEXTRIN sulfurized isobutylene COMPLEX action mechanism
原文传递
Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries 被引量:2
5
作者 Jingwei Xiang Zezhou Guo +5 位作者 Ziqi Yi Yi Zhang Lixia Yuan Zexiao Cheng Yue Shen Yunhui Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期161-165,共5页
Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,th... Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,the relatively poor electronic and ionic conductivities of SPAN limit its high-rate and lowtemperature performances.In this work,a novel one-dimensional nanofiber SPAN(SFPAN)composite is developed as the cathode material for Li-S batteries.Benefitting from its one-dimensional nanostructure,the SFPAN composite cathode provides fast channels for the migration of ions and electronics,thus effectively improving its electrochemical performance at high rates and low temperature.As a result,the SFPAN maintains a high reversible specific capacity^1200 mAh g−1 after 400 cycles at 0.3 A g−1 and can deliver a high capacity of^850 mAh g−1 even at a high current density of 12.5 A g−1.What is more,the SFPAN can achieve a capacity of^800 mAh g−1 at 0℃and^1550 mAh g−1 at 60℃,thus providing a wider temperature range of applications.This work provides new perspectives on the cathode design for high-rate lithium-sulfur batteries. 展开更多
关键词 sulfurized polyacrylonitrile One-dimensional nanofiber High-rate peformance Lithium sulfur batteries
在线阅读 下载PDF
Preparation and Action Mechanism of Inclusion Complex of β-cyclodextrin and Sulfurized Isobutylene as Additives in Solution of Polyethylene Glycol-600 被引量:1
6
作者 关集俱 许雪峰 +1 位作者 HU Jiande PENG Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期859-867,共9页
The inclusion complex of β-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigate... The inclusion complex of β-cyclodextrin (β-CD) and sulfurized isobutylene (T321) was prepared with a co-precipitation method. The tribological properties of the complex with different concentrations were investigated by a four-ball tester in the solution of polyethylene glycol-600 (PEG-600). The experimental results suggest that the complex exhibits better anti-friction and anti-wear properties than β-CD under different load conditions. The tribo-system shows the least friction coefficient when the concentration of the complex is 0.8%. During the friction process, the complex was decomposed into various molecular fragments and the T321 molecules were released onto the friction interface to provide effective lubrication. The XPS analytical results on the worn surfaces reveal that sulfide film formed by the released T321 plays a major role, and the iron alkoxide and carbon deposition films formed by the β-CD fragments have better anti-friction effect on the sulfide film surface. The interactions of different films result in the formation of a mixed boundary lubrication film. 展开更多
关键词 tribological properties Β-CYCLODEXTRIN sulfurized isobutylene COMPLEX action mechanism
原文传递
Edge sulfurized graphene nanoplatelets via vacuum mechano-chemical reaction for lithium–sulfur batteries 被引量:1
7
作者 Longlong Yan Min Xiao +2 位作者 Shuanjin Wang Dongmei Han Yuezhong Meng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期522-529,共8页
Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffu... Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area. 展开更多
关键词 Lithium sulfur batteries Graphene nanoplatelets Edge-functionalized with sulfur 3D porous foam structure Mechano-chemical interaction
在线阅读 下载PDF
Interface engineering of controllable sulfurized NiCo-LDH heterostructures enhances electromagnetic wave absorption performance
8
作者 Sen Fu Zhenyu Cheng +11 位作者 Jintang Zhou Hao Cui Yijie Liu Wenhui Zhu Lvtong Duan Shunan Wang Zhenglin Liu Yan Yi Hongbao Zhu Peijiang Liu Bo Wei Zhengjun Yao 《Nano Research》 2025年第8期49-62,共14页
The wide application of electromagnetic technology has led to increasingly frequent information transmission and communication interconnection.When the intensity of the disordered radiation of electromagnetic waves is... The wide application of electromagnetic technology has led to increasingly frequent information transmission and communication interconnection.When the intensity of the disordered radiation of electromagnetic waves is too high,it will cause electromagnetic pollution and pose a huge threat to human health or the survival of other animals and plants.How to ingeniously design absorbing materials is the key to solving the problem.This paper proposes a new design concept.The Co-based zeolite imidazolite-structured material ZIF-67 was selected as the main body of the metal-organic frameworks(MOFs)template,and the dodecahedral structured ZIF-67 nanoparticles were prepared using the classic ion-ligand process.Subsequently,a dodecahedral NiCo-LDH nanoparticle precursor composed of NiCo bimetallic hydroxide nanosheets with hollow edges and interior was obtained based on the liquid-phase cationic etching process.On this basis,thioacetamide(TAA)was selected as the vulcanizing agent,and the ZIF-67-derived sulfide inheriting the micro-nano structure of the precursor was obtained through liquid-phase hydrothermal vulcanization.The vulcanization growth mechanism and electromagnetic wave absorption mechanism of the MOF_(S)-derived sulfide were deeply explored. 展开更多
关键词 interface engineering microwave absorption NiCo-LDH controllable sulfurized
原文传递
SnS_(2)nanoparticles embedded in sulfurized polyacrylonitrile composite fibers for high-performance potassium-ion batteries 被引量:2
9
作者 Ruiling Li Lijuan Tong +6 位作者 Yitong Jiang Yaxin Wang Jing Long Xiaochuan Chen Junxiong Wu Xiaoyan Li Yuming Chen 《Interdisciplinary Materials》 EI 2024年第1期150-159,共10页
Potassium-ion batteries(PIBs)have garnered significant attention as a promising alternative to commercial lithium-ion batteries(LIBs)due to abundant and cost-efficient potassium reserves.However,the large size of pota... Potassium-ion batteries(PIBs)have garnered significant attention as a promising alternative to commercial lithium-ion batteries(LIBs)due to abundant and cost-efficient potassium reserves.However,the large size of potassium ions and the resulting sluggish reaction kinetics present major obstacles to the widespread use of PIBs.Herein,we present a simple method to ingeniously encapsulate SnS_(2)nanoparticles within sulfurized polyacrylonitrile(SPAN)fibers(SnS_(2)@SPAN)for serving as a high-performance PIB anode.The large interlayer spacing of SnS_(2)provides a fast transport channel for potassium ions during charge–discharge cycles,while the one-dimensional SPAN skeleton offers massive binding sites and shortens the diffusion path for potassium ions,facilitating faster reaction kinetics.Additionally,the excellent ductility of SPAN can effectively accommodate the large volume changes that occur in SnS_(2)upon potassium-ion insertion,thereby enhancing the cyclic stability of SnS_(2).Benefiting from the above advantages,the SnS_(2)@SPAN composites exhibit impressive cyclability over 500 cycles at 4 A g−1,with a capacity retention rate close to 100%.This study provides an effective approach for stabilizing high-capacity PIB anode materials with large volume variations. 展开更多
关键词 ELECTROSPINNING ENCAPSULATION potassium‐ion batteries sulfurized polyacrylonitrile tin disulfide
在线阅读 下载PDF
Flexible,solid-state,fiber-network-reinforced composite solid electrolyte for long lifespan solid lithium-sulfurized polyacrylonitrile battery 被引量:1
10
作者 Shiqiang Luo Enyou Zhao +4 位作者 Yixuan Gu Nagahiro Saito Zhengxi Zhang Li Yang Shin-ichi Hirano 《Nano Research》 SCIE EI CSCD 2022年第4期3290-3298,共9页
Solid lithium-sulfur batteries(SLSBs)show potential for practical application due to their possibility for high energy density.However,SLSBs still face tough challenges such as the large interface impedance and lithiu... Solid lithium-sulfur batteries(SLSBs)show potential for practical application due to their possibility for high energy density.However,SLSBs still face tough challenges such as the large interface impedance and lithium dendrite formation.Herein,a highperformance SLSB is demonstrated by using a fiber network reinforced Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)based composite solid electrolyte(CSE)in combination with sulfurized polyacrylonitrile(SPAN)cathode.The CSE consisting of an electrospun polyimide(PI)film,LLZTO ionically conducting filler and polyacrylonitrile(PAN)matrix,which is named as PI-PAN/LLZTO CSE,possesses high room-temperature ionic conductivity(2.75×10^(-4)S/cm),high Li^(+)migration number(tLi+)of 0.67 and good interfacial wettability.SPAN is utilized due to its unique electrochemical properties:reasonable electronic conductivity and no polysulfides shuttle effect.The CSE enables a highly stable Li plating/stripping cycle for over 600 h and good rate performance.Moreover,the assembled SLSB exhibits good cycle performance of accomplishing 120 cycles at 0.2 C with the capacity retention of 474 mAh/g,good rate properties and excellent long-term cycling stability with a high capacity retention of 86.49%from 15^(th)to 1,000^(th)cycles at 1.0 C.This work rationalizes our design concept and may guide the future development of SLSBs. 展开更多
关键词 solid lithium-sulfur battery composite solid electrolyte sulfurized polyacrylonitrile cathode interfacial wettability dendritefree
原文传递
Structure and reactions mechanism of sulfurized polyacrylonitrile as cathodes for rechargeable Li-S batteries 被引量:1
11
作者 Xuan Zhang Huiyang Ma +4 位作者 Jiqiong Liu Jiahang Chen Huichao Lu Yudai Huang Jiulin Wang 《Nano Research》 SCIE EI CSCD 2023年第6期8159-8172,共14页
Sulfurized polyacrylonitrile(S@pPAN)composite provides a conductive pathway for sulfur active material at the molecular level and has already become one of the most promising cathode materials in lithium-sulfur batter... Sulfurized polyacrylonitrile(S@pPAN)composite provides a conductive pathway for sulfur active material at the molecular level and has already become one of the most promising cathode materials in lithium-sulfur batteries because of its outstanding electrochemical performances via novel solid-solid conversion mechanism.Although there are a great number of researches on the S@pPAN composite material,the accurate structure of S@pPAN and its redox reaction mechanism during the charge-discharge process still have not been determined.The previous research and inferences about the structure of S@pPAN and its electrochemical reaction mechanism were summarized in this review,providing a reference for the future study of lithiumsulfur batteries. 展开更多
关键词 sulfurized polyacrylonitrile(S@pPAN)cathode STRUCTURE lithium-sulfur batteries MECHANISM
原文传递
Solid‑State Transformations of Active Materials in the Pores of Sulfurized‑Polyacrylonitrile Fiber Membranes via Nucleophilic Reactions for High‑Loading and Free‑Standing Lithium–Sulfur Battery Cathodes
12
作者 Hao Liu Yun Zhang +3 位作者 Yongbing Li Na Han Haihui Liu Xingxiang Zhang 《Advanced Fiber Materials》 SCIE EI CAS 2024年第3期772-785,共14页
Sulfurized polyacrylonitrile(SPAN)has emerged as an excellent cathode material for lithium–sulfur batteries(LiSBs),and it addresses the shuttle effect through a solid‒solid reaction.However,the actual sulfur loadings... Sulfurized polyacrylonitrile(SPAN)has emerged as an excellent cathode material for lithium–sulfur batteries(LiSBs),and it addresses the shuttle effect through a solid‒solid reaction.However,the actual sulfur loadings in SPAN often remain below 40 wt%.Due to the susceptibility of polysulfides-to-nucleophilic reactions with electrolytes,achieving physical encapsulation of elemental sulfur is a challenging task.In this study,a free-standing cathode material with a high sulfur/selenium(S/Se)loading of 55 wt%was fabricated by introducing SeS_(x) into the unique lotus root-like pores of porous SeS_(x)PAN nanofiber membranes by electrospinning and a two-step heat treatment.Insoluble compounds were formed due to nucleophilic interactions between lithium polyselenosulfides(LiSeSx)and the electrolyte,which potently blocked the existing lotus root-like pores and facilitated the creation of a thin cathode–electrolyte interphase on the fiber surface.This dual functionality of LiSeS_(x) safeguarded the active material embedded within the porous structure.The SeS_(15)PAN cathode exhibited remarkable cycling stability with almost no degradation after 200 cycles at 0.2 C,along with a high discharge capacity of 580 mAh/g.This approach presents a solution for addressing the insufficient sulfur content in SPAN. 展开更多
关键词 Lithium–sulfur batteries sulfurized polyacrylonitrile Cathode–electrolyte interphase High active material content Nucleophilic reactions
原文传递
Ultrafast Sulfur Redox Dynamics Enabled by a PPy@N‑TiO_(2) Z‑Scheme Heterojunction Photoelectrode for Photo‑Assisted Lithium–Sulfur Batteries
13
作者 Fei Zhao Yibo He +6 位作者 Xuhong Li Ke Yang Shuo Chen Yuanzhi Jiang Xue‑Sen Wang Chunyuan Song Xuqing Liu 《Nano-Micro Letters》 2026年第3期445-462,共18页
Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implem... Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies. 展开更多
关键词 Photo-assisted lithium-sulfur batteries Z-scheme heterojunction Electrocatalysis Photocatalysis Sulfur redox dynamics
在线阅读 下载PDF
Metallic WO_(2)-Promoted CoWO_(4)/WO_(2) Heterojunction with Intercalation-Mediated Catalysis for Lithium-Sulfur Batteries
14
作者 Chan Wang Pengfei Zhang +8 位作者 Jiatong Li Rui Wang Changheng Yang Fushuai Yu Xuening Zhao Kaichen Zhao Xiaoyan Zheng Huigang Zhang Tao Yang 《Nano-Micro Letters》 2026年第1期154-170,共17页
Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systemat... Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systematic strategy that rationally optimizes electronic structures and mesoscale transport properties.In this work,we propose an autogenously transformed CoWO_(4)/WO_(2) heterojunction catalyst,integrating a strong polysulfide-adsorbing intercalation catalyst with a metallic-phase promoter for enhanced activity.CoWO_(4) effectively captures polysulfides,while the CoWO_(4)/WO_(2) interface facilitates their S-S bond activation on heterogenous catalytic sites.Benefiting from its directional intercalation channels,CoWO_(4) not only serves as a dynamic Li-ion reservoir but also provides continuous and direct pathways for rapid Li-ion transport.Such synergistic interactions across the heterojunction interfaces enhance the catalytic activity of the composite.As a result,the CoWO_(4)/WO_(2) heterostructure demonstrates significantly enhanced catalytic performance,delivering a high capacity of 1262 mAh g^(−1) at 0.1 C.Furthermore,its rate capability and high sulfur loading performance are markedly improved,surpassing the limitations of its single-component counterparts.This study provides new insights into the catalytic mechanisms governing Li-S chemistry and offers a promising strategy for the rational design of high-performance Li-S battery catalysts. 展开更多
关键词 Lithium sulfur batteries Catalysis Shuttle effect HETEROJUNCTION
在线阅读 下载PDF
Undercoordination engineering of chromium single-atom catalyst with optimized d-p hybridization for lithium-sulfur batteries
15
作者 Hongyang Li Jianjun Zhang +5 位作者 Yingrui Ding Zhanpeng Huang Pengsen Qian Fanyang Sun Huimin Wang Gaoran Li 《Nano Research》 2026年第1期519-530,共12页
Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly wh... Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly when their coordination structures are carefully engineered.Here,we develop a chromium-based SAC featuring a unique undercoordinated CrN_(3) configuration to boost sulfur electrochemistry.Compared with conventional CrN_(4),the CrN_(3) motif lowers 3d orbital occupancy and meanwhile activates the in-plane hybridizations with S 3p orbitals upon interaction with polysulfides,contributing to moderate adsorption strength and reduced energy barriers for bidirectional sulfur conversions.Additionally,the integration of the two-dimensional(2D)porous framework ensures abundant electrochemically active surfaces and efficiently exposed active sites.As a result,CrN_(3)-based cells demonstrate fast and durable sulfur redox reactions,enabling an ultralow capacity decay of 0.0075%per cycle over 1000 cycles and a high-rate capability of 651.9 mAh·g^(-1)at 5 C.The CrN_(3) catalyst retains robust catalytic efficiency under demanding conditions,delivering a high areal capacity of 5.53 mAh·cm^(-2) at high sulfur loading and lean electrolyte.This work establishes a compelling paradigm of SAC coordination engineering for designing advanced sulfur electrocatalysts for next-generation LSBs. 展开更多
关键词 lithium-sulfur batteries single-atom catalysts coordination structure orbital hybridization sulfur electrocatalysis
原文传递
Impacts of trace ofloxacin on autotrophic denitrification process driven by pyrite/sulfur:Performance,microbial community evolution and metagenomic analysis
16
作者 Wenyu Yang Xin Xin Xishuang Cao 《Journal of Environmental Sciences》 2026年第1期775-784,共10页
In this work,ofloxacin(OFL),a kind of frequently detected antibiotic in groundwater,was selected to explore its impact(at ng/L-μg/L-level)on denitrification performance in an autotrophic denitrification system driven... In this work,ofloxacin(OFL),a kind of frequently detected antibiotic in groundwater,was selected to explore its impact(at ng/L-μg/L-level)on denitrification performance in an autotrophic denitrification system driven by pyrite/sulfur(FeS2/S0).Results showed that OFL restrained nitrate removal efficiency,and the inhibition degree was positively related to the concentration of OFL.After being exposed to increased OFL(200 ng/L-100μg/L)for 69 days,higher inhibition of electron transport activity(ETSA),enzyme activities of nitrate reductase(NAR),and nitrite reductase(NIR)were acquired.Meanwhile,the extracellular protein(PN)content of sludge samples was remarkably stimulated by OFL to resist the augmented toxicity.OFL contributed to increased microbial diversity and sulfur/sulfide oxidation functional genes in ng/L-level bioreactors,whereas led to a decline inμg/L level experiments.With OFL at concentrations of 200 ng/L and 100μg/L,the whole expression of 10 key denitrification functional genes was depressed,and the higher the OFL concentration,the lower the expression level.However,no significant proliferation of antibiotic resistance genes(ARGs)either in 200 ng/L-OFL or 100μg/L-OFL groups was observed.Two-factor correlation analysis results indicated that Thiobacillus,Anaerolineae,Anaerolineales,and Nitrospirae might be the main hosts of existing ARGs in this system. 展开更多
关键词 Autotrophic denitrification Ofloxacin antibiotics Microbial community Metabolism of nitrogen/sulfur Antibiotic resistance genes
原文传递
Boosting bidirectional sulfur conversion enabled by introducing boron-doped atoms and phosphorus vacancies in Ni_(2)P for lithium-sulfur batteries 被引量:2
17
作者 Lin Peng Yu Bai +3 位作者 Hang Li Meixiu Qu Zhenhua Wang Kening Sun 《Journal of Energy Chemistry》 2025年第1期760-769,共10页
Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish ... Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion. 展开更多
关键词 B-doped atoms P vacancies Nickel phosphide Bidirectional sulfur conversion Lithium-sulfur batteries
在线阅读 下载PDF
New molybdenum metallurgy process based on water-soluble mineral phase conversion of molybdenite 被引量:1
18
作者 Mu-ye CUI Jiang-tao LI +4 位作者 Zhong-wei ZHAO Xu-heng LIU Xing-yu CHEN Li-hua HE Feng-long SUN 《Transactions of Nonferrous Metals Society of China》 2025年第7期2372-2385,共14页
Potassium hydroxide(KOH)was introduced into the molybdenite roasting process to convert molybdenum(Mo)and sulfur(S)into water-soluble potassium molybdate(K_(2)MoO_(4))and potassium sulfate(K_(2)SO_(4)).Roasting with a... Potassium hydroxide(KOH)was introduced into the molybdenite roasting process to convert molybdenum(Mo)and sulfur(S)into water-soluble potassium molybdate(K_(2)MoO_(4))and potassium sulfate(K_(2)SO_(4)).Roasting with a 1.8-fold excess of KOH at 400℃ for 3 h enabled the leaching of over 99%of Mo from the molybdenum calcine using water.A precipitation method involving potassium–magnesium(K-Mg)salts was proposed for impurity removal.Under the conditions of pH 11,30℃,excess coefficient of 1.7 for Mg salts,and a duration of 1 h,98.37%of phosphorus(P)was removed from the K_(2)MoO_(4) solution.With post-purification,over 99%of Mo crystallized upon adjustment of pH to 1.Subsequently,S and K were recovered as K_(2)SO_(4) fertilizer from the crystalline mother liquor.An environmentally sustainable approach was proposed to conduct molybdenite production and ensure the efficient recovery of both Mo and S. 展开更多
关键词 MOLYBDENITE sulfur fixation roasting magnesium potassium phosphate potassium polymolybdate
在线阅读 下载PDF
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
19
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
Theory and Method of Transformative Metallurgy (Dissociation and Purification) of Beryllium Ore
20
作者 Guo Peimin ShenYaozong +3 位作者 Wang Lei Kong Lingbing Wang Dongxin Guo Qing 《稀有金属材料与工程》 北大核心 2025年第5期1207-1216,共10页
A transformative beryllium metallurgy theory and method was proposed based on the low-temperature dissociation of hydrofluoric acid and purification by exploiting the large difference of fluoride solubility.Hydrofluor... A transformative beryllium metallurgy theory and method was proposed based on the low-temperature dissociation of hydrofluoric acid and purification by exploiting the large difference of fluoride solubility.Hydrofluoric acid can quickly dissociate berylum ore powder directly at low or room temperature with more than 99%dissociation rate.The solubility of AlF_(3),FeF_(3) CrF_(3) and MgF_(2),is low.Coupled with common ion effect,99.9%-purity beryllium products can be prepared without chemical purification.For high-purity beryllium products of grade 4N or higher,they can be prepared through the superior property that the pH intervals of iron,chromium,and other hydroxide precipitates are distinctly different from those corresponding to Be(OH)_(2),precipitates.This new method can be used to prepare most of the beryllium products that are prepared by modern beryllium metallurgy. 展开更多
关键词 beryllum ore metallurgy sulfuric acid hydrofluoric acid PURITY yielding rate environmental protection
原文传递
上一页 1 2 77 下一页 到第
使用帮助 返回顶部