An efficient C-3 sulfuration of oxindoles has been developed.Using disulfide as the sulfurating agent,a wide range of sulfurated oxindoles have been synthesized under t-BuOK/N,N-dimethylformamide(DMF)promoted conditio...An efficient C-3 sulfuration of oxindoles has been developed.Using disulfide as the sulfurating agent,a wide range of sulfurated oxindoles have been synthesized under t-BuOK/N,N-dimethylformamide(DMF)promoted conditions.The present method is highly atom economic,environmentally friendly and tolerated a broad scope of substrates.展开更多
Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(na...Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(namely ZR1,ZR1-Cl,and ZR1-S-Cl respectively),along with a crystalline non-fullerene acceptor IDIC-4 Cl with a chlorinated 1,1-dicyanomethylene-3-indanone(IC) end group.Energy levels,molar extinction coefficients and crystallinities of three donor molecules can be effectively altered by combining chlorination and sulfuration strategies.Especially,the ZR1-S-Cl exhibited the best absorption ability,lowest higher occupied molecular orbital(HOMO) energy level and highest crystallinity among three donors,resulting in the corresponding all-small-molecule organic solar cells to produce a high power conversion efficiency(PCE) of 12.05% with IDIC-4 Cl as an acceptor.展开更多
The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxide...The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.展开更多
Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction ki...Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction kinetics issues of rechargeable magnesium batteries(RMBs)by providing more active sites as well as releasing inner stress during cycling.Herein,WO_(3)@WO_(3-x)S_(x) owning crystalline@amorphous core-shell structure containing both active core and active shell is constructed successfully by introducing S into metastable WO3 structure under temperaturefield applying.In such structure,amorphous shell would provide continuous Mg^(2+)diffusion channels due to its isotropy property for most Mg^(2+)migrating rapidly to interface and then adsorb at ions reservoir formed by interfacial electricfield for increasing specific capacity.It also makes security for stable structure of WO_(3)@WO_(3-x)S_(x) by alleviating volume expansion of crystalline core WO_(3) during cycling to prolong cycling life.Additionally,“softer”ions S^(2-)would weaken interaction between hard acid Mg^(2+) and ionic lattice to enhance Mg^(2+)storage kinetics.Therefore,WO_(3)@WO_(3-x)S_(x) delivers the superior cycling performance(1000 cycles with 83.3%),rate capability(88.5 mAh g^(-1) at 1000 mA g^(-1))and specific capacity(about 150 mAh g^(-1) at 50 mA g^(-1)),which is near 2 times higher than that of WO3.It is believed that the crystalline@amorphous core-shell structure with both active core and shell designing via doping strategy is enlightening for the development of high-performance RMBs,and such design can be extended to other energy storage devices for better electrochemical performance.展开更多
Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion interc...Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion intercalation. So far, challenges in the synthesis of phase-pure WS2, restacking between WS2 nanosheets, low electronic conductivity, and the brittle nature of WS2, severely limit its use Li-ion battery application. Herein, we develop a facile low temperature solution sulfuration process to improve battery performance dramatically. The sulfuration process is demonstrated to be effective in converting WO3 impurities to WS2, and in repairing the sulfur vacancies, to improve cyclability and rate capability. Lithium-ion battery measurements demonstrate that the stable capacity of the WS2 anode could be enhanced by 48.4% via sulfuration reprocessing, i.e., from 381.7 to 566.8 rnAh/g at a relatively high current density of 0.8 A/g after 50 cycles. We further show that the sulfuration process can be readily extended to other dichalcogenides, and may provide a class of versatile electrode materials for lithium-ion batteries with improved electrochemical characteristics.展开更多
Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish ...Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.展开更多
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit...The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries.展开更多
A transformative beryllium metallurgy theory and method was proposed based on the low-temperature dissociation of hydrofluoric acid and purification by exploiting the large difference of fluoride solubility.Hydrofluor...A transformative beryllium metallurgy theory and method was proposed based on the low-temperature dissociation of hydrofluoric acid and purification by exploiting the large difference of fluoride solubility.Hydrofluoric acid can quickly dissociate berylum ore powder directly at low or room temperature with more than 99%dissociation rate.The solubility of AlF_(3),FeF_(3) CrF_(3) and MgF_(2),is low.Coupled with common ion effect,99.9%-purity beryllium products can be prepared without chemical purification.For high-purity beryllium products of grade 4N or higher,they can be prepared through the superior property that the pH intervals of iron,chromium,and other hydroxide precipitates are distinctly different from those corresponding to Be(OH)_(2),precipitates.This new method can be used to prepare most of the beryllium products that are prepared by modern beryllium metallurgy.展开更多
A reaction between steroidal sapogenins and hydrogen sulfide promoted by BF3•Et2O is described.The thio-diosgenin and thiotigogenin comprising a sulfur atom on the F ring can be easily afforded in one step under this ...A reaction between steroidal sapogenins and hydrogen sulfide promoted by BF3•Et2O is described.The thio-diosgenin and thiotigogenin comprising a sulfur atom on the F ring can be easily afforded in one step under this mild reaction condition.Furthermore,a hypothetical mechanism is also shown.展开更多
Lithium metal batteries(LMBs)have attracted great intention due to the high energy density[1].Among various battery technologies,lithium-sulfur(Li-S)batteries are also very unique but important due to its high energy ...Lithium metal batteries(LMBs)have attracted great intention due to the high energy density[1].Among various battery technologies,lithium-sulfur(Li-S)batteries are also very unique but important due to its high energy density,low cost and available sources[2].Although Li-s batteries exhibit high energy density,the cycling life is poor,especially for large-capacity pouch cells[3].The cycling performance of Li-s batteries is crucially determined by 16-electron complex sulfur reduction reaction(SRR)from S_(8)molecules to Li_(2)S,solid,which involves the multiple potential interwoven branches among lithium polysulfide intermediates(LiPS,e.g.,S_(8),Li_(2)S_(8),Li_(2)S_(6),Li_(2)S_(4)and Li_(2)S)[4].The obvious shuttle for soluble Lips across the cathode and anode leads to the battery capacity fading.Thus,it is necessary to decrease the accumulation of soluble Lips in the electrolyte through catalysts fastening the key conversion step from high-order polysulfides to insoluble Li_(2)S_(2)/Li_(2)S.Although some effort has been devoted to catalyze SRR,the complex mechanism remains unclear.To address this issue,Duan et al.tried to solve it based on nitrogen,sulfur,dualdoped holey graphene framework(N,S-HGF)electrocatalyst in Nature[5].展开更多
In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatu...In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatures and hydrocarbon concentrations in the FCC riser reactor to convert SOxinto H_(2)S.Subsequently,H_(2)S,along with the cracked gas,is processed downstream to produce sulfur.Thermodynamic analysis of the key reduction reactions in the FCC-DeSOxprocess revealed that complete conversion of SOxto H_(2)S is feasible in the dry gas(hydrogen-rich) prelift zone,as well as the upper and lower zones of the riser,upon achieving thermodynamic equilibrium.Experimental studies were conducted to replicate the conditions of these reaction zones using a low concentration of hydrogen gas as the reducing agent.Through process optimization,investigation of the minimum reaction time,and kinetic studies,the potential of this method for the complete reduction of SOxwas further confirmed.展开更多
Despite significant progress has been achieved regarding the shuttle-effect of lithium polysulfides,the suppressed specific capacity and retarded redox kinetics under high sulfur loading still threat the actual energy...Despite significant progress has been achieved regarding the shuttle-effect of lithium polysulfides,the suppressed specific capacity and retarded redox kinetics under high sulfur loading still threat the actual energy density and power density of lithium-sulfur batteries.In this study,a graham condenser-inspired carbon@WS_(2)host with coil-in-tube structure was designed and synthesized using anodic aluminum oxide(AAO)membrane with vertically aligned nanopores as template.The vertical array of carbon nanotubes with internal carbon coils not only leads to efficient charge transfer across through the thickness of the cathode,but also provides significant confinement to polysulfide diffusion towards both the lateral and longitudinal directions.Few-layer WS_(2)in the carbon coils perform a synergistic role in suppressing the shuttle-effect as well as boosting the cathodic kinetics.As a result,high specific capacity(1180 m Ah/g at 0.1 C)and long-cycling stability at 0.5 C for 500 cycles has been achieved at 3 mgS/cm^(2).Impressive areal capacity of 7.4 m Ah/cm^(2)has been demonstrated when the sulfur loading reaches 8.4 mg/cm^(2).The unique coil-in-tube structure developed in this work provides a new solution for high sulfur loading cathode towards practical lithium-sulfur batteries.展开更多
Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are...Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.展开更多
Pyrrhotite oxidation poses a big threat to water environment duo to its high potential for generating pollutants.Hydrogen peroxide,commonly found in natural water at micromolar concentrations,possesses much more aggre...Pyrrhotite oxidation poses a big threat to water environment duo to its high potential for generating pollutants.Hydrogen peroxide,commonly found in natural water at micromolar concentrations,possesses much more aggressive oxidation ability than oxygen and can complicate the pyrrhotite oxidation process.Here,the effects of micromolar H_(2)O_(2) on the biotic and abiotic oxidation of pyrrhotite were examined at pH 1.93 and 6.45,respectively.Pyrrhotite oxidation was much more severe in acidic solutions compared to near neutral solutions.Jarosite with a high Fe/S molar ratio was widely detected in the precipitate collected in acidic solutions,and the introduction of external H_(2)O_(2) influenced the crystallinity of jarosite.A layer of iron-deficient iron-sulfur oxide formed on the surface of pyrrhotite prevents its continuous oxidation,and the presence of Acidithiobacillus ferrooxidans enhanced this situation by promoting the release of Fe from the pyrrhotite.Additionally,the presence of external micromolar H_(2)O_(2) also determined the elemental state on pyrrhotite surface,as it found that the contribution of Fe^(3+)and S(S^(4+)and S^(6+))species on pyrrhotite surface increased with the increase of H_(2)O_(2) concentration in the solutions,especially in the presence of Acidithiobacillus ferrooxidans.展开更多
With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can re...With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].展开更多
Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of e...Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of easy electrode collapse due to large volume expansion during charge and discharge and low active materials utilization caused by the severe shuttle effect of lithium polysulfides(LiPSs).Therefore,in this work,ramie gum(RG)was extracted from ramie fiber degumming liquid and used as the functional binder to address the above problems and improve the Li-S battery’s performance for the first time.Surprisingly,the sulfur cathode using RG binder illustrates a high initial capacity of 1152.2 mAh/g,and a reversible capacity of 644.6 mAh/g after 500 cycles at 0.5 C,far better than the sulfur cathode using polyvinylidene fluoride(PVDF)and sodium carboxymethyl cellulose(CMC)binder.More importantly,even if the active materials loading increased to as high as 4.30 mg/cm^(2),the area capacity is still around 3.1 mAh/cm^(2)after 200 cycles.Such excellent performances could be attributed to the abundant oxygen-and nitrogen-containing functional groups of RG that can effectively inhibit the shuttle effect of LiPSs,as well as the excellent viscosity and mechanical properties that can maintain electrode integrity during long-term charging/discharging.This work verifies the feasibility of RG as an eco-friendly and high-performance Li-S battery binder and provides a new idea for the utilization of agricultural biomass resources.展开更多
The role of brassinosteroids(BRs)in enabling plants to respond effectively to adverse conditions is well known,though the precise mechanism of action that helps plants cope with arsenic(As)toxicity is still difficult ...The role of brassinosteroids(BRs)in enabling plants to respond effectively to adverse conditions is well known,though the precise mechanism of action that helps plants cope with arsenic(As)toxicity is still difficult to interpret.Therefore we tested the effect of brassinolide(BL)spray(0,0.5,and 1 mg·L^(-1))on As(0,and 10 mg·L^(-1))stressed tomato defense responses As stress led to the induction of oxidative stress,impaired chlorophyll and nitrogen metabolism,and Fe uptake,in conjunction with a reduction in plant growth and biomass.BL spray,on the contrary,protected the photo synthetic system and helped plants grow better under As stress.This was achieved by controlling the metabolism of chlorophyll and proline and lowering the amounts of methylglyoxal and H_(2)O_(2) through glyoxalaseⅠandⅡand antioxidant enzyme s.BL decreased arsenic accumulation by directing As sequestration towards vacuoles and increased Fe amount in the leaves and roots by regulating the expression of As(Lsil and Lsi2)and Fe(IRT1,IRT2,NRAMP1,and NRAMP3)transporters in As-stressed tomatoes.Furthermore,BL boosted adaptability against As phytotoxicity,while reducing the damaging impacts on photosynthesis,nitrogen metabolism,sulfur asimilation,and Fe absorption.These results offer a solid framework for the development of exogenous BRs-based breeding strategies for safer agricultural development.展开更多
Titanium-bearing blast furnace slag(Ti-BFS)is an industrial solid waste rich in titanium,magnesium and aluminum.However,it is difficult to utilize Ti,Mg and Al from Ti-BFS for the strong stability and poor reaction ac...Titanium-bearing blast furnace slag(Ti-BFS)is an industrial solid waste rich in titanium,magnesium and aluminum.However,it is difficult to utilize Ti,Mg and Al from Ti-BFS for the strong stability and poor reaction activity of Ti-BFS.A comprehensive utilization route of Ti,Mg and Al from Ti-BFS was proposed.Ti-BFS was firstly roasted with H_(2)SO_(4)to realizes the conversion of Ti,Mg and Al to their corresponding sulphates.The sulphates were leached by dilute H_(2)SO_(4)solution to extraction Ti,Mg and Al from roasted Ti-BFS.The roasting conditions were optimized as follows,sulfuric acid concentration of 85%(mass),temperature of 200℃,acid-slag ratio of 5.5,particle size of Ti-BFS<75μm,and reaction time of 1 h.The extraction rates of titanium,aluminum,and magnesium reached 82.42%,88.78%and 90.53%,respectively.The leachate was hydrolyzed at 102℃for 5 h with a titanium hydrolysis ratio of 96%.After filtration and calcination,TiO_(2)with a purity of 97%(mass)was obtained.Al in the leachate was converted to NH_(4)Al(SO_(4))_(2)·12H_(2)O by the neutralization of ammonia water at pH=4.5.Al_(2)O_(3) was obtained by the calcination of NH_(4)Al(SO_(4))_(2)·12H_(2)O.The residual solution can be used to prepare products of magnesium sulfate.In the proposed process,Ti,Mg and Al were extracted from Ti-BFS and utilized comprehensively to prepare valuable products.The leaching behavior of roasted Ti-BFS with water was also studied.It followed the unreacted shrinking core model.The apparent activation energy was 26.07 kJ·mol^(-1).This research not only provides a viable method for recovering valuable metals in Ti-BFS,but also provides a strategy to comprehensive utilize the valuable elements in Ti-BFS.展开更多
Sulfuric acid slag,a common byproduct with high iron content,poses challenges due to its high levels of harmful impurities and is often discarded as solid waste,leading to significant environmental and water pollution...Sulfuric acid slag,a common byproduct with high iron content,poses challenges due to its high levels of harmful impurities and is often discarded as solid waste,leading to significant environmental and water pollution.To address this issue and improve resource utilization,the preparation process of oxidized pellets from sulfuric acid slag was studied,exploring suitable pelletizing systems and thermal parameters.Additionally,the removal of harmful elements and the consolidation mechanism were established during the oxidation roasting process.The findings revealed that sulfuric acid slag along with specific processing conditions,such as using two high-pressure grinding rolls and adding 1.25 wt.%bentonite,resulted in the production of qualified green pellets with desirable physical properties.Through a thermal treatment process involving preheating and roasting,the desulfurization rate of the pellets reached 95.55%and the removal efficiency of arsenic achieved 27.11%.Hematite recrystallizes,shrinks,and forms a reticulated structure with Fe2O3 recrystallization as the backbone,resulting in higher consolidation strength.展开更多
Contaminants in the water environment of different pyritemines have varying characteristics due to different geological origins.Sulfur isotope(δ^(34)S)is an effective tool to reveal the mechanism of water environment...Contaminants in the water environment of different pyritemines have varying characteristics due to different geological origins.Sulfur isotope(δ^(34)S)is an effective tool to reveal the mechanism of water environment contamination,but no investigations have yet analyzed the characteristics and environmental significance of the δ^(34)S in the water environment of different pyritemines.This study involved a field investigation of four typical pyritemines in China(representing volcanic,skarn,sedimentary-metamorphic,and coal-deposited types)and the analysis of the hydrochemistry of aqueous samples and the δ^(34)S of both pyrite and dissolved sulfates.The S isotopes in minerals of different types of mines were associated with the deposit genesis,and S isotopes in the water environment were affected by sulfide minerals and indicative of the contaminant sources,types of contaminants,and contaminant transport processes.The environmental significance of δ^(34)S in the water environment was further explored and a contamination model for pyrite mines established based on S isotope data.The study offers a theoretical foundation for further research on the prevention,control,and management of water pollution at various types of pyrite mines.展开更多
文摘An efficient C-3 sulfuration of oxindoles has been developed.Using disulfide as the sulfurating agent,a wide range of sulfurated oxindoles have been synthesized under t-BuOK/N,N-dimethylformamide(DMF)promoted conditions.The present method is highly atom economic,environmentally friendly and tolerated a broad scope of substrates.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 21822503, 51973043, 21534003, 21721002, 51863002 and 51973042)the Ministry of Science and Technology of China (Grant No. 2016YFA0200700)+2 种基金Youth Innovation Promotion AssociationK. C. Wong Education Foundationthe Chinese Academy of Sciences。
文摘Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(namely ZR1,ZR1-Cl,and ZR1-S-Cl respectively),along with a crystalline non-fullerene acceptor IDIC-4 Cl with a chlorinated 1,1-dicyanomethylene-3-indanone(IC) end group.Energy levels,molar extinction coefficients and crystallinities of three donor molecules can be effectively altered by combining chlorination and sulfuration strategies.Especially,the ZR1-S-Cl exhibited the best absorption ability,lowest higher occupied molecular orbital(HOMO) energy level and highest crystallinity among three donors,resulting in the corresponding all-small-molecule organic solar cells to produce a high power conversion efficiency(PCE) of 12.05% with IDIC-4 Cl as an acceptor.
基金supported by Cooperated Project of Academy and College Yunnan province(2003CBALA02P023)
文摘The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,22379080,Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059the Postdoctoral Program in Qingdao under No.QDBSH20220202019.
文摘Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction kinetics issues of rechargeable magnesium batteries(RMBs)by providing more active sites as well as releasing inner stress during cycling.Herein,WO_(3)@WO_(3-x)S_(x) owning crystalline@amorphous core-shell structure containing both active core and active shell is constructed successfully by introducing S into metastable WO3 structure under temperaturefield applying.In such structure,amorphous shell would provide continuous Mg^(2+)diffusion channels due to its isotropy property for most Mg^(2+)migrating rapidly to interface and then adsorb at ions reservoir formed by interfacial electricfield for increasing specific capacity.It also makes security for stable structure of WO_(3)@WO_(3-x)S_(x) by alleviating volume expansion of crystalline core WO_(3) during cycling to prolong cycling life.Additionally,“softer”ions S^(2-)would weaken interaction between hard acid Mg^(2+) and ionic lattice to enhance Mg^(2+)storage kinetics.Therefore,WO_(3)@WO_(3-x)S_(x) delivers the superior cycling performance(1000 cycles with 83.3%),rate capability(88.5 mAh g^(-1) at 1000 mA g^(-1))and specific capacity(about 150 mAh g^(-1) at 50 mA g^(-1)),which is near 2 times higher than that of WO3.It is believed that the crystalline@amorphous core-shell structure with both active core and shell designing via doping strategy is enlightening for the development of high-performance RMBs,and such design can be extended to other energy storage devices for better electrochemical performance.
基金This work was financially supported by the National Basic Research Program of China (No. 2013CB932903), the National Natural Science Foundation of China (Nos. 61205057 and 61203289), China Postdoctoral Science special Foundation (No. 2012T50488), Qing Lan Pro- ject, by the "1311 Talent Plan" Foundation of Nanjing University of Posts and Telecommunications.
文摘Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion intercalation. So far, challenges in the synthesis of phase-pure WS2, restacking between WS2 nanosheets, low electronic conductivity, and the brittle nature of WS2, severely limit its use Li-ion battery application. Herein, we develop a facile low temperature solution sulfuration process to improve battery performance dramatically. The sulfuration process is demonstrated to be effective in converting WO3 impurities to WS2, and in repairing the sulfur vacancies, to improve cyclability and rate capability. Lithium-ion battery measurements demonstrate that the stable capacity of the WS2 anode could be enhanced by 48.4% via sulfuration reprocessing, i.e., from 381.7 to 566.8 rnAh/g at a relatively high current density of 0.8 A/g after 50 cycles. We further show that the sulfuration process can be readily extended to other dichalcogenides, and may provide a class of versatile electrode materials for lithium-ion batteries with improved electrochemical characteristics.
基金Institute of Technology Research Fund Program for Young Scholars21C Innovation Laboratory Contemporary Amperex Technology Co.,Limited,Ninde, 352100, China (21C–OP-202314)。
文摘Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.
基金partially supported by National Natural Science Foundation of China(52172250)Institute of Process Engineering(IPE)Project for Frontier Basic Research(QYJC-2023-06)。
文摘The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries.
基金National Key Research and Development Program of China(2021YFC2902301,2021YFC2902302)。
文摘A transformative beryllium metallurgy theory and method was proposed based on the low-temperature dissociation of hydrofluoric acid and purification by exploiting the large difference of fluoride solubility.Hydrofluoric acid can quickly dissociate berylum ore powder directly at low or room temperature with more than 99%dissociation rate.The solubility of AlF_(3),FeF_(3) CrF_(3) and MgF_(2),is low.Coupled with common ion effect,99.9%-purity beryllium products can be prepared without chemical purification.For high-purity beryllium products of grade 4N or higher,they can be prepared through the superior property that the pH intervals of iron,chromium,and other hydroxide precipitates are distinctly different from those corresponding to Be(OH)_(2),precipitates.This new method can be used to prepare most of the beryllium products that are prepared by modern beryllium metallurgy.
基金support from the Natural Science Foundation of China(Nos.29070070,29372077).
文摘A reaction between steroidal sapogenins and hydrogen sulfide promoted by BF3•Et2O is described.The thio-diosgenin and thiotigogenin comprising a sulfur atom on the F ring can be easily afforded in one step under this mild reaction condition.Furthermore,a hypothetical mechanism is also shown.
文摘Lithium metal batteries(LMBs)have attracted great intention due to the high energy density[1].Among various battery technologies,lithium-sulfur(Li-S)batteries are also very unique but important due to its high energy density,low cost and available sources[2].Although Li-s batteries exhibit high energy density,the cycling life is poor,especially for large-capacity pouch cells[3].The cycling performance of Li-s batteries is crucially determined by 16-electron complex sulfur reduction reaction(SRR)from S_(8)molecules to Li_(2)S,solid,which involves the multiple potential interwoven branches among lithium polysulfide intermediates(LiPS,e.g.,S_(8),Li_(2)S_(8),Li_(2)S_(6),Li_(2)S_(4)and Li_(2)S)[4].The obvious shuttle for soluble Lips across the cathode and anode leads to the battery capacity fading.Thus,it is necessary to decrease the accumulation of soluble Lips in the electrolyte through catalysts fastening the key conversion step from high-order polysulfides to insoluble Li_(2)S_(2)/Li_(2)S.Although some effort has been devoted to catalyze SRR,the complex mechanism remains unclear.To address this issue,Duan et al.tried to solve it based on nitrogen,sulfur,dualdoped holey graphene framework(N,S-HGF)electrocatalyst in Nature[5].
基金supported by General Program of National Natural Science Foundation of China (22178385)。
文摘In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatures and hydrocarbon concentrations in the FCC riser reactor to convert SOxinto H_(2)S.Subsequently,H_(2)S,along with the cracked gas,is processed downstream to produce sulfur.Thermodynamic analysis of the key reduction reactions in the FCC-DeSOxprocess revealed that complete conversion of SOxto H_(2)S is feasible in the dry gas(hydrogen-rich) prelift zone,as well as the upper and lower zones of the riser,upon achieving thermodynamic equilibrium.Experimental studies were conducted to replicate the conditions of these reaction zones using a low concentration of hydrogen gas as the reducing agent.Through process optimization,investigation of the minimum reaction time,and kinetic studies,the potential of this method for the complete reduction of SOxwas further confirmed.
基金the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Safety Protection(Nos.YBKT2106,YBKT23-05)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Despite significant progress has been achieved regarding the shuttle-effect of lithium polysulfides,the suppressed specific capacity and retarded redox kinetics under high sulfur loading still threat the actual energy density and power density of lithium-sulfur batteries.In this study,a graham condenser-inspired carbon@WS_(2)host with coil-in-tube structure was designed and synthesized using anodic aluminum oxide(AAO)membrane with vertically aligned nanopores as template.The vertical array of carbon nanotubes with internal carbon coils not only leads to efficient charge transfer across through the thickness of the cathode,but also provides significant confinement to polysulfide diffusion towards both the lateral and longitudinal directions.Few-layer WS_(2)in the carbon coils perform a synergistic role in suppressing the shuttle-effect as well as boosting the cathodic kinetics.As a result,high specific capacity(1180 m Ah/g at 0.1 C)and long-cycling stability at 0.5 C for 500 cycles has been achieved at 3 mgS/cm^(2).Impressive areal capacity of 7.4 m Ah/cm^(2)has been demonstrated when the sulfur loading reaches 8.4 mg/cm^(2).The unique coil-in-tube structure developed in this work provides a new solution for high sulfur loading cathode towards practical lithium-sulfur batteries.
基金supported by the National Natural Science Foundation of China(62204074)the Hebei Natural Science Foundation(F2022201061,F2023201025)+2 种基金the Open bidding for selecting the best candidates of Baoding(2023chuang206)the High-level Talent Research Startup Project of Hebei University(521100221085)the Post-graduate's Innovation Fund Project of Hebei University(HBU2024BS030).
文摘Despite sulfurization offers the advantage of improving the photovoltaic performance in preparing Cu(In,Ga)Se2(CIGS)absorbers,deep level defects in the absorber and poor energy level alignment on the front surface are still main obstacles limiting the improvement of power co nversion efficiency(PCE)in sulfided CIGS solar cells.Herein,an in-situ Na doping strategy is proposed,in which the tailing effect of crystal growth is used to promote the sulfurization of CIGS absorbers.It is found that the grain growth is supported by Na incorporating due to the enrichment of NaSe_(x)near the upper surface.The high soluble Na during grain growth can not only suppress intrinsic In_(Cu) donor defects in the absorber,but also tailor S distribution in bulk and the band alignment at the heterojunction,which are both beneficial for the effective electron carriers.Meanwhile,the Na aggregation near the bottom of the absorber also contributes to the crystalline quality increasing and favorable ultra-thin MoSe_(2) formation at back contact,resulting in a reduced barrier height conducive to hole transport.PCE of the champion device is as high as 16.76%with a 28%increase.This research offers new insights into synthesizing CIGS solar cells and other chalcogenide solar cells with superior cell performance when using an intense sulfurization process.
基金supported by the National Key Research and Development Program of China(No.2022YFC3203301)the Natural Science Foundation of China(No.41406098).
文摘Pyrrhotite oxidation poses a big threat to water environment duo to its high potential for generating pollutants.Hydrogen peroxide,commonly found in natural water at micromolar concentrations,possesses much more aggressive oxidation ability than oxygen and can complicate the pyrrhotite oxidation process.Here,the effects of micromolar H_(2)O_(2) on the biotic and abiotic oxidation of pyrrhotite were examined at pH 1.93 and 6.45,respectively.Pyrrhotite oxidation was much more severe in acidic solutions compared to near neutral solutions.Jarosite with a high Fe/S molar ratio was widely detected in the precipitate collected in acidic solutions,and the introduction of external H_(2)O_(2) influenced the crystallinity of jarosite.A layer of iron-deficient iron-sulfur oxide formed on the surface of pyrrhotite prevents its continuous oxidation,and the presence of Acidithiobacillus ferrooxidans enhanced this situation by promoting the release of Fe from the pyrrhotite.Additionally,the presence of external micromolar H_(2)O_(2) also determined the elemental state on pyrrhotite surface,as it found that the contribution of Fe^(3+)and S(S^(4+)and S^(6+))species on pyrrhotite surface increased with the increase of H_(2)O_(2) concentration in the solutions,especially in the presence of Acidithiobacillus ferrooxidans.
基金the support of the National Natural Science Foundation of China(Nos.22205207 and 22378369).
文摘With the acceleration of industrialization,the pollution problem of sulfur dioxide(SO_(2))emitted from coal-fired power plants has become increasingly severe.Although wet flue gas desulfurization(FGD)technology can remove about 95%of SO_(2),its high energy consumption and the corrosion risk of downstream equipment caused by residual SO_(2)(500–3000 ppm)still need to be addressed[1].Previous porous materials(such as MOFs)achieve selective adsorption of SO_(2) through open metal sites,M–OH sites or functional organic groups,but the problem of CO_(2) co-adsorption limits their practical application[2].In recent years,hydrogen-bonded organic frameworks(HOFs)have emerged as a research hotspot due to their reversible hydrogen-bonding networks and flexible structures[3],but their stability under extreme conditions and efficient separation performance still need to be improved[4].
基金supported by the National Natural Science Foundation of China(Nos.51902036,52071295,52002352)Natural Science Foundation of Chongqing Science&Technology Commission(Nos.cstc2019jcyj-msxm1407 and CSTB2022NSCQ-MSX0828)+2 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(No.CX2021046)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZDK202300802)Research Project of Innovative Talent Training Engineering Program of Chongqing Primary and Secondary School(No.CY230801).
文摘Even the sulfur cathode in lithium-sulfur(Li-S)battery has the advantages of high theoretical energy density,wide source of raw materials,no pollution to the environment,and so on.It still suffers the sore points of easy electrode collapse due to large volume expansion during charge and discharge and low active materials utilization caused by the severe shuttle effect of lithium polysulfides(LiPSs).Therefore,in this work,ramie gum(RG)was extracted from ramie fiber degumming liquid and used as the functional binder to address the above problems and improve the Li-S battery’s performance for the first time.Surprisingly,the sulfur cathode using RG binder illustrates a high initial capacity of 1152.2 mAh/g,and a reversible capacity of 644.6 mAh/g after 500 cycles at 0.5 C,far better than the sulfur cathode using polyvinylidene fluoride(PVDF)and sodium carboxymethyl cellulose(CMC)binder.More importantly,even if the active materials loading increased to as high as 4.30 mg/cm^(2),the area capacity is still around 3.1 mAh/cm^(2)after 200 cycles.Such excellent performances could be attributed to the abundant oxygen-and nitrogen-containing functional groups of RG that can effectively inhibit the shuttle effect of LiPSs,as well as the excellent viscosity and mechanical properties that can maintain electrode integrity during long-term charging/discharging.This work verifies the feasibility of RG as an eco-friendly and high-performance Li-S battery binder and provides a new idea for the utilization of agricultural biomass resources.
基金financial support from the National Key Research and Development Program of China(Grant No.2023YFD220120302)supported by RUDN University Strategic Academic Leadership Program。
文摘The role of brassinosteroids(BRs)in enabling plants to respond effectively to adverse conditions is well known,though the precise mechanism of action that helps plants cope with arsenic(As)toxicity is still difficult to interpret.Therefore we tested the effect of brassinolide(BL)spray(0,0.5,and 1 mg·L^(-1))on As(0,and 10 mg·L^(-1))stressed tomato defense responses As stress led to the induction of oxidative stress,impaired chlorophyll and nitrogen metabolism,and Fe uptake,in conjunction with a reduction in plant growth and biomass.BL spray,on the contrary,protected the photo synthetic system and helped plants grow better under As stress.This was achieved by controlling the metabolism of chlorophyll and proline and lowering the amounts of methylglyoxal and H_(2)O_(2) through glyoxalaseⅠandⅡand antioxidant enzyme s.BL decreased arsenic accumulation by directing As sequestration towards vacuoles and increased Fe amount in the leaves and roots by regulating the expression of As(Lsil and Lsi2)and Fe(IRT1,IRT2,NRAMP1,and NRAMP3)transporters in As-stressed tomatoes.Furthermore,BL boosted adaptability against As phytotoxicity,while reducing the damaging impacts on photosynthesis,nitrogen metabolism,sulfur asimilation,and Fe absorption.These results offer a solid framework for the development of exogenous BRs-based breeding strategies for safer agricultural development.
基金the Pangang Group Company Limited for its financial supportthe support from the Fundamental Research Funds for the Central Universities(SCU2024D009)。
文摘Titanium-bearing blast furnace slag(Ti-BFS)is an industrial solid waste rich in titanium,magnesium and aluminum.However,it is difficult to utilize Ti,Mg and Al from Ti-BFS for the strong stability and poor reaction activity of Ti-BFS.A comprehensive utilization route of Ti,Mg and Al from Ti-BFS was proposed.Ti-BFS was firstly roasted with H_(2)SO_(4)to realizes the conversion of Ti,Mg and Al to their corresponding sulphates.The sulphates were leached by dilute H_(2)SO_(4)solution to extraction Ti,Mg and Al from roasted Ti-BFS.The roasting conditions were optimized as follows,sulfuric acid concentration of 85%(mass),temperature of 200℃,acid-slag ratio of 5.5,particle size of Ti-BFS<75μm,and reaction time of 1 h.The extraction rates of titanium,aluminum,and magnesium reached 82.42%,88.78%and 90.53%,respectively.The leachate was hydrolyzed at 102℃for 5 h with a titanium hydrolysis ratio of 96%.After filtration and calcination,TiO_(2)with a purity of 97%(mass)was obtained.Al in the leachate was converted to NH_(4)Al(SO_(4))_(2)·12H_(2)O by the neutralization of ammonia water at pH=4.5.Al_(2)O_(3) was obtained by the calcination of NH_(4)Al(SO_(4))_(2)·12H_(2)O.The residual solution can be used to prepare products of magnesium sulfate.In the proposed process,Ti,Mg and Al were extracted from Ti-BFS and utilized comprehensively to prepare valuable products.The leaching behavior of roasted Ti-BFS with water was also studied.It followed the unreacted shrinking core model.The apparent activation energy was 26.07 kJ·mol^(-1).This research not only provides a viable method for recovering valuable metals in Ti-BFS,but also provides a strategy to comprehensive utilize the valuable elements in Ti-BFS.
基金financially supported by the Fundamental Research Funds for the Central Universities of Central South University(2023ZZTS0506).
文摘Sulfuric acid slag,a common byproduct with high iron content,poses challenges due to its high levels of harmful impurities and is often discarded as solid waste,leading to significant environmental and water pollution.To address this issue and improve resource utilization,the preparation process of oxidized pellets from sulfuric acid slag was studied,exploring suitable pelletizing systems and thermal parameters.Additionally,the removal of harmful elements and the consolidation mechanism were established during the oxidation roasting process.The findings revealed that sulfuric acid slag along with specific processing conditions,such as using two high-pressure grinding rolls and adding 1.25 wt.%bentonite,resulted in the production of qualified green pellets with desirable physical properties.Through a thermal treatment process involving preheating and roasting,the desulfurization rate of the pellets reached 95.55%and the removal efficiency of arsenic achieved 27.11%.Hematite recrystallizes,shrinks,and forms a reticulated structure with Fe2O3 recrystallization as the backbone,resulting in higher consolidation strength.
基金supported by the National Key R&D Program of China(No.2022YFC3702203)the National Natural Science Foundation of China(Nos.42030706,and 42277405).
文摘Contaminants in the water environment of different pyritemines have varying characteristics due to different geological origins.Sulfur isotope(δ^(34)S)is an effective tool to reveal the mechanism of water environment contamination,but no investigations have yet analyzed the characteristics and environmental significance of the δ^(34)S in the water environment of different pyritemines.This study involved a field investigation of four typical pyritemines in China(representing volcanic,skarn,sedimentary-metamorphic,and coal-deposited types)and the analysis of the hydrochemistry of aqueous samples and the δ^(34)S of both pyrite and dissolved sulfates.The S isotopes in minerals of different types of mines were associated with the deposit genesis,and S isotopes in the water environment were affected by sulfide minerals and indicative of the contaminant sources,types of contaminants,and contaminant transport processes.The environmental significance of δ^(34)S in the water environment was further explored and a contamination model for pyrite mines established based on S isotope data.The study offers a theoretical foundation for further research on the prevention,control,and management of water pollution at various types of pyrite mines.