Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansio...Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansion,along with the formation of polysulfides during cycling,restrict their practical applications.To overcome these issues,it is necessary to find suitable and effective sulfur host materials.Metal-organic frameworks(MOFs),which are porous crystalline materials in the bourgeoning developmental stages,have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure.Herein,we provide a comprehensive overview of MOF-based sulfur-loaded materials and discuss the charge/discharge mechanisms,strategies of enhancing battery performance,sulfur loading methods,and applications in LSBs.An outlook on future directions,prospects,and possible obstacles for the development of these materials is also provided.展开更多
The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with ...The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with abundant active sites and strong chemisorption capability for LiPSs,is regarded as effective strategy to address these issues.Herein,Se-doping is introduced into the nitrogen-doped carbon coated CoP composite(Se-CoP@NC)to generate structural defects,which effectively enlarges the lattice spacing of CoP and reduces the conversion reaction energy barriers of LiPSs.Meanwhile,Se-doping sites bridges the interface of CoP and nitrogen-doped carbon,accelerating the charge transfer behavior and conversion reaction kinetics of LiPSs.Benefiting from the structural advantages,the assembled Li-S batteries with S/Se-CoP@NC as cathode exhibit high reversible capacity of 779.6 mAh/g at 0.5 C after 500 cycles,and high specific capacity of 805.9 mAh/g at 2 C.Even under extreme conditions(high sulfur-loading content of 6.9 mg/cm^(2);lean electrolyte dosage of 7μL/mg),the corresponding Li-S batteries also keep high reversible areal capacity of 4.5 mAh/cm^(2) after 100 cycles at 0.1 C.This work will inspire the design of metal compounds-based catalysts from atomic level to facilitate the practicability of Li-S batteries.展开更多
基金supported by the National Natural Science Foundation of China (NSFC-U1904215, and 21671170)Changjiang scholars program of the Ministry of Education (Q2018270)+3 种基金the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)Program for New Century Excel ent Talents of the University in China (NCET-13-0645)the Six Talent Plan (2015-XCL-030)Qinglan Project of Jiangsu and Program for Colleges Natural Science Research in Jiangsu Province (18KJB150036)
文摘Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansion,along with the formation of polysulfides during cycling,restrict their practical applications.To overcome these issues,it is necessary to find suitable and effective sulfur host materials.Metal-organic frameworks(MOFs),which are porous crystalline materials in the bourgeoning developmental stages,have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure.Herein,we provide a comprehensive overview of MOF-based sulfur-loaded materials and discuss the charge/discharge mechanisms,strategies of enhancing battery performance,sulfur loading methods,and applications in LSBs.An outlook on future directions,prospects,and possible obstacles for the development of these materials is also provided.
基金the financial support from the National Natural Science Foundation of China(No.52101250)the S&T program of Hebei(Nos.215A4401D and 225A4404D)+5 种基金the Collaborative Innovation Center of Marine Science and Technology of Hainan University(No.XTCX2022HYC14)the Fundamental Research Funds for the Hebei University(No.2021YWF11)the Science Research Project of Hebei Education Department(No.QN2024087)the Xingtai City Natural Science Foundation(No.2023ZZ027)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),College of Chemistry,Nankai Universitypartially supported by the Pico Election Microscopy Center of Hainan University。
文摘The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with abundant active sites and strong chemisorption capability for LiPSs,is regarded as effective strategy to address these issues.Herein,Se-doping is introduced into the nitrogen-doped carbon coated CoP composite(Se-CoP@NC)to generate structural defects,which effectively enlarges the lattice spacing of CoP and reduces the conversion reaction energy barriers of LiPSs.Meanwhile,Se-doping sites bridges the interface of CoP and nitrogen-doped carbon,accelerating the charge transfer behavior and conversion reaction kinetics of LiPSs.Benefiting from the structural advantages,the assembled Li-S batteries with S/Se-CoP@NC as cathode exhibit high reversible capacity of 779.6 mAh/g at 0.5 C after 500 cycles,and high specific capacity of 805.9 mAh/g at 2 C.Even under extreme conditions(high sulfur-loading content of 6.9 mg/cm^(2);lean electrolyte dosage of 7μL/mg),the corresponding Li-S batteries also keep high reversible areal capacity of 4.5 mAh/cm^(2) after 100 cycles at 0.1 C.This work will inspire the design of metal compounds-based catalysts from atomic level to facilitate the practicability of Li-S batteries.