期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metal-Organic Framework-Based Sulfur-Loaded Materials 被引量:2
1
作者 Meng Du Qing Li +2 位作者 Guangxun Zhang Feifei Wang Huan Pang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期215-230,共16页
Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansio... Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansion,along with the formation of polysulfides during cycling,restrict their practical applications.To overcome these issues,it is necessary to find suitable and effective sulfur host materials.Metal-organic frameworks(MOFs),which are porous crystalline materials in the bourgeoning developmental stages,have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure.Herein,we provide a comprehensive overview of MOF-based sulfur-loaded materials and discuss the charge/discharge mechanisms,strategies of enhancing battery performance,sulfur loading methods,and applications in LSBs.An outlook on future directions,prospects,and possible obstacles for the development of these materials is also provided. 展开更多
关键词 lithium-sulfur batteries metal-organic frameworks sulfur-loaded materials
在线阅读 下载PDF
Selenium-doping metal phosphides as bifunctional catalyst carrier for durable lithium-sulfur batteries
2
作者 Wenxue Wang Longwei Bai +3 位作者 Na Li Shuo Zhao Xiaodong Shi Peng Wang 《Chinese Chemical Letters》 2025年第10期581-587,共7页
The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with ... The practical application of lithium-sulfur(Li-S)batteries is still impeded by the severe shuttle effect of lithium polysulfides(LiPSs)and sluggish reaction kinetics of active sulfur.Designing catalytic carriers with abundant active sites and strong chemisorption capability for LiPSs,is regarded as effective strategy to address these issues.Herein,Se-doping is introduced into the nitrogen-doped carbon coated CoP composite(Se-CoP@NC)to generate structural defects,which effectively enlarges the lattice spacing of CoP and reduces the conversion reaction energy barriers of LiPSs.Meanwhile,Se-doping sites bridges the interface of CoP and nitrogen-doped carbon,accelerating the charge transfer behavior and conversion reaction kinetics of LiPSs.Benefiting from the structural advantages,the assembled Li-S batteries with S/Se-CoP@NC as cathode exhibit high reversible capacity of 779.6 mAh/g at 0.5 C after 500 cycles,and high specific capacity of 805.9 mAh/g at 2 C.Even under extreme conditions(high sulfur-loading content of 6.9 mg/cm^(2);lean electrolyte dosage of 7μL/mg),the corresponding Li-S batteries also keep high reversible areal capacity of 4.5 mAh/cm^(2) after 100 cycles at 0.1 C.This work will inspire the design of metal compounds-based catalysts from atomic level to facilitate the practicability of Li-S batteries. 展开更多
关键词 Porous catalytic carrier Selenium-doping metal phosphides Polysulfides shuttle effect Active sulfur dissolution High sulfur-loading content Lithium-sulfur batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部