Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
Immobilizing chiral 1,1'-bi-2-naphthol (BINOL) in one step onto polymer backbone via stable carbon-carbon bond through Suzuki reaction was achieved. The application of this immobilized chiral BINOL to the catalytic...Immobilizing chiral 1,1'-bi-2-naphthol (BINOL) in one step onto polymer backbone via stable carbon-carbon bond through Suzuki reaction was achieved. The application of this immobilized chiral BINOL to the catalytic asymmetric oxidation of sulfide to sulfoxide exhibited good activity (up to 60% yield) and high enantioselectivity (up to 89% ee). The immobilized chiral catalyst was very stable and could be readily reused for over 5 times without significant loss of catalytic activity and enantioselectivity.展开更多
Sperm cryopreservation is an essential technique for male fertility preservation,especially in men who are undergoing medical treatment.Conventional cryopreservation methods face limitations such as oxidative stress,D...Sperm cryopreservation is an essential technique for male fertility preservation,especially in men who are undergoing medical treatment.Conventional cryopreservation methods face limitations such as oxidative stress,DNA fragmentation,and cytotoxicity associated with traditional cryoprotectants like dimethyl sulfoxide(DMSO).Recent breakthroughs have focused on improving post-thaw sperm viability with novel cryoprotectants and innovative freezing strategies.Prospective approaches include the use of amino acid-based cryoprotectants,deep eutectic solvents,and antioxidants that have been described to prevent oxidative damage and maintain DNA integrity.Vitrification,a high-speed freezing technique that prevents ice crystal formation,has demonstrated superior outcomes compared to conventional slow freezing.Moreover,the Direct Dropping Method,a cryoprotectant-free approach,has been introduced as a contamination-minimizing technique that preserves sperm functionality.Multiomics tools are also utilized to determine biomarkers for protocol optimization.Despite these advancements,cryoprotectant toxicity is a central challenge,emphasizing the necessity for safer agents.Future research must focus on long-term sperm functionality and individualized cryopreservation strategies to maximize reproductive outcomes.The current review highlights the challenges associated with sperm cryopreservation,explores innovative strategies and novel cryoprotectants,underscores the significance of maintaining DNA integrity,and proposes future research directions to improve fertility preservation outcomes.展开更多
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
文摘Immobilizing chiral 1,1'-bi-2-naphthol (BINOL) in one step onto polymer backbone via stable carbon-carbon bond through Suzuki reaction was achieved. The application of this immobilized chiral BINOL to the catalytic asymmetric oxidation of sulfide to sulfoxide exhibited good activity (up to 60% yield) and high enantioselectivity (up to 89% ee). The immobilized chiral catalyst was very stable and could be readily reused for over 5 times without significant loss of catalytic activity and enantioselectivity.
文摘Sperm cryopreservation is an essential technique for male fertility preservation,especially in men who are undergoing medical treatment.Conventional cryopreservation methods face limitations such as oxidative stress,DNA fragmentation,and cytotoxicity associated with traditional cryoprotectants like dimethyl sulfoxide(DMSO).Recent breakthroughs have focused on improving post-thaw sperm viability with novel cryoprotectants and innovative freezing strategies.Prospective approaches include the use of amino acid-based cryoprotectants,deep eutectic solvents,and antioxidants that have been described to prevent oxidative damage and maintain DNA integrity.Vitrification,a high-speed freezing technique that prevents ice crystal formation,has demonstrated superior outcomes compared to conventional slow freezing.Moreover,the Direct Dropping Method,a cryoprotectant-free approach,has been introduced as a contamination-minimizing technique that preserves sperm functionality.Multiomics tools are also utilized to determine biomarkers for protocol optimization.Despite these advancements,cryoprotectant toxicity is a central challenge,emphasizing the necessity for safer agents.Future research must focus on long-term sperm functionality and individualized cryopreservation strategies to maximize reproductive outcomes.The current review highlights the challenges associated with sperm cryopreservation,explores innovative strategies and novel cryoprotectants,underscores the significance of maintaining DNA integrity,and proposes future research directions to improve fertility preservation outcomes.