期刊文献+
共找到1,458篇文章
< 1 2 73 >
每页显示 20 50 100
A Novel Sulfided Mo/C Catalyst for Direct Vapor Phase Carbonylation of Methanol at Atmospheric Pressure 被引量:1
1
作者 Feng PengDepartment of Chemical Engineering, South China University of Technology, Guangzhou 510640, China 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第1期31-36,共6页
The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the sup... The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the support greatly affects the Mo catalyst in the directvapor-phase carbonylation of methanol, and activated carbon is the best supports of the investigatedsupports. In addition, the relationships between adsorptions of NH_3 and CO and carbonylation ofmethanol were investigated. A novel sulfided Mo/C catalyst had high activity and selectivity for thevapor phase carbonylation of methanol to methyl acetate without the addition of a CH_3I promoter tothe feed. The reaction conditions were optimized at a reaction temperature of 573 K, a methanolconcentration of 23 mol% and a carbon monoxide space velocity of 3,000 L/(kg·h). Under theseoptimal conditions a methanol conversion of 50%, carbonylation selectivity of 80 rnol%, andspace-time yield of 8.0 mol/(kg·h) were obtained. The active phase of this novel sulfided Mo/Ccatalyst is the non-crystalline phase, and the active component is present as MoS_(2.5) on thesurface of the activated carbon. 展开更多
关键词 METHANOL CARBONYLATION sulfided catalyst MOLYBDENUM catalystsupport activated carbon heterogeneous catalysis
在线阅读 下载PDF
Study on Relationship between Microstructure of Active Phase and HDS Performance of Sulfided Ni-Mo Catalysts: Effect of Metal Loading 被引量:22
2
作者 Guo Rong Shen Benxian +3 位作者 Fang Xiangchen Sun Jin Peng Chong Cui Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第2期12-19,共8页
Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy,... Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading. 展开更多
关键词 Ni-Mo catalysts HYDRODESULFURIZATION SULFIDATION MICROSTRUCTURE metal loading
在线阅读 下载PDF
Water gas shift activity of Co-Mo/MgO-Al_2O_3 catalysts presulfided with ammonium sulfide 被引量:6
3
作者 Yixin Lian, Huifang Wang, Weiping Fang, Yiquan Yang Department of Chemistry, College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, Fujian, China 《Journal of Natural Gas Chemistry》 CSCD 2010年第1期61-66,共6页
Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalys... Co-Mo/MgO-Al2O3 catalyst was presulfided with ammonium sulfide in aqueous solution and activated with synthesis gas for water gas shift reaction. The assay results indicate that the presulfided Co-Mo/MgO-Al2O3 catalyst exhibits an excellent catalytic activity and stability. XRD and EPR characterization results show that the O-S exchange might occur during the impregnation, leading to the formation of (NH4)2MoS4 (or (NH4)zMoxSy) precursor, which was then thermally decomposed and reduced to MoS2. The higher catalytic performance is attributed to an optimization formation of active Co-Mo sulfides, consisting of well dispersed MoS2 and Co-Mo-S phase due to the redispersion of Co sulfide particles over the edges of newly formed MoS2 crystallites. 展开更多
关键词 Co-Mo-based catalyst ammonium sulfide presulfidation water-gas shift
在线阅读 下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2 被引量:2
4
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
暂未订购
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
5
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Flammability of sulfide solid-state electrolytesβ-Li_(3)PS_(4)and Li_(6)PS_(5)Cl:Volatilization and autoignition of sulfur vapor-New insight into all-solid-state battery thermal runaway 被引量:2
6
作者 Thomas A.Yersak Hernando J.Gonzalez Malabet +3 位作者 Vamakshi Yadav Nicholas P.W.Pieczonka Will Collin Mei Cai 《Journal of Energy Chemistry》 2025年第3期651-660,共10页
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l... This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization. 展开更多
关键词 SULFIDE Solid-state electrolyte FLAMMABILITY ALL-SOLID-STATE Battery Thermal runaway
在线阅读 下载PDF
Micro-sized hexapod-like CuS/Cu_(9)S_(5) hybrid with broadband electromagnetic wave absorption 被引量:2
7
作者 Mengjun Han Di Lan +5 位作者 Zhiming Zhang Yizhi Zhao Jiaxiao Zou Zhenguo Gao Guanglei Wu Zirui Jia 《Journal of Materials Science & Technology》 2025年第11期302-312,共11页
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi... Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides. 展开更多
关键词 Heterogeneous interface Hexapod shape Transition metal sulfide Electromagnetic wave absorption
原文传递
Layered MoS_(2)-supported and metallic Ni-doped MgH_(2) towards enhanced hydrogen storage kinetics and cycling stability 被引量:1
8
作者 Haimei Tang Yiqi Sun +7 位作者 Hua Ning Hui Luo Qinqin Wei Cunke Huang Zhiqiang Lan Jin Guo Xinhua Wang Haizhen Liu 《Journal of Magnesium and Alloys》 2025年第9期4517-4529,共13页
Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poo... Mg-based hydrogen storage materials have attracted much attention due to their high hydrogen content,abundant resources,and environmental friendliness.However,the high dehydrogenation temperature,slow kinetics and poor cycling stability are limiting its practical application.This work demonstrates the improved dehydrogenation kinetics and cycling stability of MgH_(2) modified by a hybrid of metallic Ni and layered MoS_(2)(denoted as“Ni-MoS_(2)”)introduced by ball milling,with Ni as the catalyst for MgH_(2) and MoS_(2) as the support for both Ni and MgH_(2).The onset dehydrogenation temperature of MgH_(2) is reduced to 198℃,and the rehydrogenation begins at a low temperature of 50℃.The MgH_(2)+10 wt%Ni-MoS_(2) composite has a fast dehydrogenation kinetics and can release 6.1 wt% hydrogen in 10 min at a constant temperature of 300℃,with the dehydrogenation activation energy significantly reduced from 151 to 85 kJ mol^(-1).During the cycling,the reversible capacity of the composite first exhibits a gradual increase for the initial 22 cycles and then maintains at 6.1 wt% from the 23th cycle to the 50th cycle.The Ni/MoS_(2) addition does not change the overall thermodynamic properties of MgH_(2) but can weaken the Mg-H bonds in the local regions as evident by theoretical calculation.Microstructure studies reveal that the metallic Ni will react with MgH_(2) to form Mg_(2)NiH_(0.3),which can act as a hydrogen pump,while the layered MoS_(2) serves as a support for the well dispersion of MgH_(2) and Ni.It is believed that the synergy of Mg_(2)NiH_(0.3) and layered MoS_(2) contributes to the significantly enhanced hydrogen storage of MgH_(2).This work provides a promising and simple strategy for enhancing the Mg-based hydrogen storage materials by combination of transition metals and layered materials introduced via simple ball milling. 展开更多
关键词 Hydrogen storage Magnesium hydride NICKEL Molybdenum sulfide 2D materials
在线阅读 下载PDF
Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries 被引量:1
9
作者 Wenjing Li Renhua Qian +7 位作者 Boxu Dong Zhou Xu Changyu Yan Menghan Yang Yuxuan Liu Xinrui Yan Jiantao Zai Xuefeng Qian 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2814-2820,共7页
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance... Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis. 展开更多
关键词 multicomponent sulfides electronic properties synergistic effect polysulfide/iodide redox flow batteries
在线阅读 下载PDF
Construction of 3D porous Cu_(1.81)S/nitrogen-doped carbon frameworks for ultrafast and long-cycle life sodium-ion storage
10
作者 Chen Chen Hongyu Xue +6 位作者 Qilin Hu Mengfan Wang Pan Shang Ziyan Liu Tao Peng Deyang Zhang Yongsong Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期191-200,共10页
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d... Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode. 展开更多
关键词 copper sulfide nanoparticles porous carbon framework fast charging long-cycle performance sodium-ion full batteries
在线阅读 下载PDF
Preparation of carbon fiber cloth supported porous CdS nanorods with excellent photocatalytic activity for Cr(Ⅵ)reduction
11
作者 LI Hengchao WANG Wenguang +3 位作者 WU Liangpeng JIAN Siyuan LONG Shimin GUO Yuxi 《中南民族大学学报(自然科学版)》 CAS 2025年第1期9-21,共13页
The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge... The use of visible-light responsive photocatalysts for removing heavy metal ions in wastewater has received great attention.However,the development of photocatalysts with high activity and recyclability remains a huge challenge.Herein,a recyclable carbon fiber cloth-supported porous CdS nanorod photocatalyst was fabricated by a two-step hydrothermal treatment using AgVO_(3) nanowires as templates.The results indicated that under visible-light illumination,the carbon cloth-supported porous CdS nanorods showed improved photocatalytic activity for the reduction of Cr(Ⅵ),with an apparent rate constant exceeding that of carbon cloth-supported CdS nanospheres by a factor of 1.65 times.Moreover,the carbon cloth-supported porous CdS nanorods can be easily separated and be reused.This brings a new perspective for developing photocatalysts with high efficiency and recyclability for wastewater treatment. 展开更多
关键词 carbon cloth cadmium sulfide silver metavanadate porous nanorods heavy metal ions reduction
在线阅读 下载PDF
Structural engineering of a bimetallic iron-cobalt sulfide composite anode for superior sodium-ion battery performance
12
作者 FU Zheng-guang LI Nan +2 位作者 SHAO Xin-yu HONG Min SUN Ju-tao 《新型炭材料(中英文)》 北大核心 2025年第5期1113-1122,I0029-I0035,共17页
Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate per... Transition metal sulfides are considered promising anode materials for sodium-ion batteries(SIBs)due to their high theoretical capacity and low synthesis cost.However,is-sues such as poor cyclic stability and rate performance,arising from volume expansion and structural degradation,remain sig-nificant challenges.We report a novel FeS_(2)/CoS_(2) heterostruc-ture embedded in a 3D carbon aerogel matrix(FeS_(2)/CoS_(2)@C)synthesized by a cross-linking and vulcanization process.The resulting core-shell structure,with bimetallic FeS_(2)/CoS_(2) nano-particles encapsulated in a conductive carbon shell,effectively reduces the adverse effects of volume changes during sodiation/desodiation cycles.The 3D porous carbon network increases both ion and electron diffusion,while preventing agglomeration of the active material and maintaining interface integrity.The FeS_(2)/CoS_(2)@C composite has an outstanding electrochemical performance,including a high specific capacity of 725 mAh g^(-1)at 0.5 A g^(-1)and an exceptional rate capability of 572 mAh g^(-1)at 10 A g^(-1).It also has remarkable cycling stability with no signific-ant capacity decay over 1000 cycles at 5 A g^(-1). 展开更多
关键词 Sodium-ion battery ANODE Metal sulfide High capacity Electrochemical performance
在线阅读 下载PDF
Nanoflower Copper Sulfide as Cathode Materials for Magnesium Ion Batteries
13
作者 He Yuantai Wu Liang +3 位作者 Shi Yongan Zhong Zhiyong Yao Wenhui Pan Fusheng 《稀有金属材料与工程》 北大核心 2025年第3期545-553,共9页
CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesi... CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries. 展开更多
关键词 copper sulfide nanoflower magnesium ion batteries CTAB hydrothermal synthesis
原文传递
Porous spherical MnCo_(2)S_(4) as high⁃performance electrode material for hybrid supercapacitors
14
作者 LUO Min WANG Xiaonan +3 位作者 ZHANG Yaqin PANG Tian LI Fuzhi SHI Pu 《无机化学学报》 北大核心 2025年第2期413-424,共12页
Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an excep... Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an exceptionalspecific capacitance of 190.8 mAh·g^(-1)at 1 A·g^(-1),greatly higher than the corresponding monometallic sulfides MnS(31.7 mAh·g^(-1))and Co_(3)S_(4)(86.7 mAh·g^(-1)).Impressively,the as-assembled MnCo_(2)S_(4)||porous carbon(PC)hybridsupercapacitor(HSC),showed an outstanding energy density of 76.88 Wh·kg^(-1)at a power density of 374.5 W·kg^(-1),remarkable cyclic performance with a capacity retention of 86.8% after 10000 charge-discharge cycles at 5 A·g^(-1),and excellent Coulombic efficiency of 99.7%. 展开更多
关键词 transitional metal sulfide SUPERCAPACITOR porous spherical structure
在线阅读 下载PDF
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
15
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
FeMoS_(4)/carbon fiber cloth composites:Preparation and application in dye-sensitized solar cells
16
作者 ZHANG Qian ZHANG Yuxuan +3 位作者 YANG Yongguang BAI Ruijie LI Yuandong LI Ling 《无机化学学报》 北大核心 2025年第9期1916-1926,共11页
Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite end... Herein,an FMS/CC composite was successfully fabricated by depositing FeMoS_(4)onto a pristine carbon fiber cloth(CC)substrate via a facile two-step hydrothermal method.The amorphous nature of the FMS/CC compos-ite endows it with abundant catalytically active sites,thereby accelerating the reduction of I_(3)^(-).More importantly,the dye-sensitized solar cells(DSSCs)prepared by scraping it on flexible titanium mesh with low resistance had low series resistance(Rs).Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency(PCE)of ca.9.51%(surpassing the ca.8.15%efficiency of the Pt counter electrode),open-circuit voltage(Voc)of ca.0.79 V,short-circuit current density(Jsc)of ca.18.31 mA·cm^(-2),and fill factor(FF)of ca.0.65.Moreover,after 100 times of cyclic voltammetry(CV)test,the CV curve remained unchanged,indicating the excellent stability of FMS/CC in the electrolyte containing I_(3)^(-)/I^(-). 展开更多
关键词 dye-sensitized solar cells transition metal sulfides counter electrode
在线阅读 下载PDF
A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells
17
作者 ZHANG Linfang YIN Wenzhu YIN Gui 《无机化学学报》 北大核心 2025年第3期540-548,共9页
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ... Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift. 展开更多
关键词 hydrogen sulfide near⁃infrared fluorescence probe cell imaging
在线阅读 下载PDF
Growth behavior of heavy metal sulfide particles:A comparison between gas-liquid and liquid-liquid sulfidation
18
作者 Chunxue Li Meiqing Shi +5 位作者 Qingzhu Li Jiahui Wu Xu Yan Qingwei Wang Zhang Lin Liyuan Chai 《Journal of Environmental Sciences》 2025年第8期615-623,共9页
Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle... Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle size and settling performance remain unclear.In this study,the growth behavior of CuS particles generated by two sulfide precipitation methods,gas-liquid and liquid-liquid sulfidation,was investigated.The effects of acidity,sulfur-to-copper molar ratio,and temperature on particle size were analyzed.The results showed that increasing the temperature had an adverse effect on CuS particle growth.Additionally,we found that acidity and sulfur-to-copper molar ratio had a more significant impact on particle growth in the liquid-liquid sulfidation system than in the gas-liquid sulfidation system.Based on supersaturation calculations and XPS analysis,it is found that particle growth in gas-liquid sulfidation systems is mainly influenced by supersaturation,while particle growth in liquid-liquid sulfidation systems is mainly affected by surface charge.This study provides valuable insights into the factors that influence particle growth in sulfide precipitation and can inform the development of strategies to improve the effective precipitation of sulfide nanoparticles in acidic wastewater. 展开更多
关键词 Sulfide precipitation Liquid-liquid sulfidation Gas-liquid sulfidation SUPERSATURATION Surface charge Particle growth
原文传递
Three-dimensional amorphous N-doped cobalt-copper sulfide nanostructures for efficient full water splitting
19
作者 Jin-Chun He Ding-Cen Duan +7 位作者 Yun-Cheng Du Zong-Qin Ding Sha-Sha Yan Xin Chen Hui Zhang Xuan-Xuan Bi Rong-Yue Wang Xing-Bo Ge 《Rare Metals》 2025年第5期3080-3093,共14页
The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transitio... The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts. 展开更多
关键词 Cobalt sulfide/copper sulfide N-DOPING Three-dimensional electrode Water splitting Synergistic effects
原文传递
Biomass thermal decomposition induced hydrogen sulfide blooming in thermal recovery reservoirs
20
作者 Ying-Jia Zhu Yun-Yang Wan +2 位作者 Yan Tian Hong-Mei Mu Tong-Gang Zhang 《Petroleum Science》 2025年第4期1802-1810,共9页
High concentration of secondary hydrogen sulfide(sH_(2)S) in thermal recovery reservoirs of Liaohe Oilfield,NE China was concluded to originate from thermochemical sulfate reduction(TSR),and no biotic source of H_(2)S... High concentration of secondary hydrogen sulfide(sH_(2)S) in thermal recovery reservoirs of Liaohe Oilfield,NE China was concluded to originate from thermochemical sulfate reduction(TSR),and no biotic source of H_(2)S under abundant biomass has been reported in these presumed steam sterilized reservoirs ever before.In this study,we propose a new mechanism,biomass thermal decomposition for sulfur compounds(BTDS),to interpret the increasing of sH_(2)S.Sulfur of cells' dry weight took 0.20%-1.92% of the active strains isolated from the in-situ thermal recovery reservoirs of Liaohe Oilfield.When microbial organic sulfur compounds(MOSC) in biomass were exposed to injected steam,it resulted in the BTDS process.The isolated Bacillus subtilis D3(G+) and Pseudomonas aeruginosa XJ14(G-) were chosen to simulate this process.About 36% of sulfur in MOSC emitted as H_(2)S in steam chamber by BTDS.The δ^(34)S of H_(2)S from produced gas ranged from 8.7‰ to 17.0‰,close to the δ^(34)S of H_(2)S 11.2‰ from BTDS simulation experiment.It provides new insight into the contribution and sulfur cycle made by subterranean microorganisms on H_(2)S formation. 展开更多
关键词 Thermal recovery reservoir Microbial abundance Hydrogen sulfide Biomass thermal decomposition for sulfide Sulfur isotope
原文传递
上一页 1 2 73 下一页 到第
使用帮助 返回顶部