All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for t...All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for the next-generation energy storage systems.However,interfacial issues between SSEs and Nirich oxide cathode materials,attributed to space charge layer,interfacial side reactions,and mechanical contact failure,significantly restrict the performances of ASSBs.The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication.Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode,this article systematically discusses how cathode active materials(CAMs),electrolytes,conductive additives,binders,and electrode fabrication impact the interface compatibility.In addition,the strategies for the compatibility modification are reviewed.Furthermore,the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed.This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.展开更多
In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic ac...In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic acid)ligand.Mg_(2)Ti-ABTC exhibited permanent porosity for N_(2),CO_(2),CH_(4),C_(2)H_(2),C_(2)H_(4),and C_(2)H_(6)gas adsorption.Further-more,Mg_(2)Ti-ABTC exhibited outstanding photocatalytic activity in the oxidation of aromatic sulfides to the corre-sponding sulfoxides under ambient air conditions.Mechanism studies reveal that photoinduced holes(h^(+)),the super-oxide radical(·O_(2)^(-)),and singlet oxygen(^(1)O_(2))are pivotal species involved in the photocatalytic oxidation reaction.展开更多
Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient cat...Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.展开更多
Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode mate...Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability.Herein,we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance.Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid(de)intercalation near the surface/edge of the material,thereby enhancing its pseudocapacitive sodium storage properties.Consequently,the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g^(-1) at 1 A g^(-1) and an outstanding rate capability of 450.60 mAh g^(-1) at 3 A g^(-1).This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
The relationship between hydrogen sulfide (H2S) and nitric oxide (NO) in myocardial infarction (MI) has not been previously reported. In the current investigation, we sought to determine the roles of both H2S an...The relationship between hydrogen sulfide (H2S) and nitric oxide (NO) in myocardial infarction (MI) has not been previously reported. In the current investigation, we sought to determine the roles of both H2S and NO in MI in rats. Animals were randomly divided into 5 groups and treated with L-NG-nitro arginine methyl ester (L-NAME), sildenafil, saline, propargylglycine (PAG) and L-cysteine, respectively, for 1 week prior to performing MI surgery or sham operation. The mortality rates were lower in sildenafil and L-cysteine treated rats in the MI group. The infarct area was significantly reduced in sildenafil and L-cysteine treated rats. Moreover, plasma H2S measurements revealed that the level in the sildenafil treated group was lower than in the L-NAME treated MI group, which was consistent with an observed decrease in cystathionine gamma-lyase (CSE) enzyme activity. CSE protein expression level in the L-NAME treated MI group was significantly higher than in sildenafil treated MI group. eNOS protein content in the L-cysteine treated MI group was lower than in the PAG treated MI group and eNOS gene expression is significantly decreased in the L-cysteine treated rats. We demonstrated that endogenous H2S and NO are cardioprotective in the rat model of MI. Indeed, both the H2S-CSE and NO-NOS system appear to have a mutual down-regulation effect in MI process in our experimental rat model.展开更多
By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68...By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68H_(2)O(1)has been successfully obtained via one-pot method and systematically characterized by IR,XPS,solid UV spectra,PXRD pattern,and TGA analysis.The analysis of X-ray crystallography exhibits that compound 1 crystallizes in the triclinic space group P-1 and presents a novel square-shaped Zr-substituted tetrameric polyoxometalate.The catalytic oxidation of sulfides by 1 are carried out,which demonstrate that 1 exhibits a good performance for the catalytic oxidation of sulfides to sulfones with high conversion(100%)and high selectivity(100%).展开更多
Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal ...Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal movement in response to ethylene in Viciafaba L. Ethylene treatment resulted in the dose-dependent stomatal closure under light, and this effect was blocked by the inhibitors of H2S biosynthesis in V. faba L. Additionally, ethylene induces H2S generation and increases L-/D-cysteine desulfhydrase (pyridoxalphosphate-dependent enzyme) activity in leaves of V. faba L. Inhibitors of H2S biosynthesis have no effect on the ethylene-induced stomatal closure, NO accumulation, and nitrate reductase (NR) activity in guard cells or leaves of II. faba L. Moreover, the ethylene-induced increase of H2S levels and L-/D- cysteine desulfhydrase activity declined when NO generation was inhibited. Therefore, we conclude that H2S and NO probably are involved in the signal transduction pathway of ethylene-induced stomatal closure. H2S may represent a novel component downstream of NO in the ethylene-induced stomatal movement in V. faba L.展开更多
Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically slug...Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage.展开更多
In the present study, a series of novel nitric oxide-hydrogen sulfide releasing derivatives of(S)-3-n-butylphthalide((S)-NBP) were designed, synthesized, and evaluated as potential antiplatelet agents. Compound NOSH-N...In the present study, a series of novel nitric oxide-hydrogen sulfide releasing derivatives of(S)-3-n-butylphthalide((S)-NBP) were designed, synthesized, and evaluated as potential antiplatelet agents. Compound NOSH-NBP-5 displayed the strongest activity in inhibiting the arachidonic acid(AA)- and adenosine diphosphate(ADP)-induced platelet aggregation in vitro, with 3.8- and 7.0-fold more effectiveness than(S)-NBP, respectively. Furthermore, NOSH-NBP-5 could release moderate levels of NO and H2 S, which would be beneficial in improving cardiovascular and cerebral circulation. Moreover, NOSH-NBP-5 could release(S)-NBP when incubated with rat brain homogenate. In conclusion, these findings may provide new insights into the development of novel antiplatelet agents for the treatment of thrombosis-related ischemic stroke.展开更多
Electrochemical oxidation of 5-hydroxymethylfurfural(HMFOR),featuring favorable thermodynamics,presents a promising alternative to the conventional oxygen evolution reaction for energy-saving hydrogen(H_(2))production...Electrochemical oxidation of 5-hydroxymethylfurfural(HMFOR),featuring favorable thermodynamics,presents a promising alternative to the conventional oxygen evolution reaction for energy-saving hydrogen(H_(2))production coupled with biomass upgrading.However,the multiple proton-coupled electron transfer steps in HMFOR result in sluggish kinetics,highlighting the development of highly efficient electrocatalysts.Herein,a high-entropy amorphous MoCrCoNiZn-S grown on nickel foam(HEAS@NF)is constructed via a metal organic framework-derived strategy to efficiently convert HMF to 2,5-furandicarboxylic acid(FDCA).The abundant active sites on the HEAS@NF facilitate the structural evolution to oxyhydroxides that possess strong reducibility for HMF dehydrogenation,leading to superior HMFOR performance compared to sulfides with fewer metal elements.In situ electrochemical impedance spectroscopy results confirm significantly favored kinetics to HMFOR over OER on the HEAS@NF,resulting in a remarkable98%HMF conversion,with FDCA yield and Faradaic efficiency of 98%and 94%even at a concentrated 100 mM HMF.A two-electrode flow electrolyzer equipped with the bifunctional HEAS@NF enables simultaneous cathodic H2and anodic FDCA production with an electricity saving of 10.8%.This study presents an effective strategy to inspire the exploration of high-entropy catalysts for biomass-assisted H2production.展开更多
DBUH-Br_3 catalyzed selective conversion of sulfides to sulfoxides in the presence of H_2O_2 as oxidizing agent is described.The reaction was performed selectively at room temperature and relatively short reaction times.
Remaining largely under-appreciated, a majority of metal ion sorbents are limited in their target selectivity. In this work, a 3D sulfide intercalated NiFe-layered double hydroxide (NFL-S) hierarchical sorbent has bee...Remaining largely under-appreciated, a majority of metal ion sorbents are limited in their target selectivity. In this work, a 3D sulfide intercalated NiFe-layered double hydroxide (NFL-S) hierarchical sorbent has been synthesized for selective heavy metal removal. The intercalation of sulfurated groups in the interlayer of the layered double hydroxide (LDH) nanosheets endows NFL-S as a selective heavy metal ion filter;the selectivity of NFL-S for heavy metals is in the order of Pb^2+> Cu^2+≥ Zn^2+> Cd^2+> Mn^2+, and NFL-S has high kd values for Pb2+(~10^6 mL/g) and Cu2+(~10^5 mL/g). Scanning electron microscopy. X-ray photoelectron spectroscopy and powder X-ray diffraction were used to analyze the composition of the as-prepared nanoadsorbent. The selective adsorption behavior was systematically studied using batch experiments, and the performance was evaluated through kinetic and isotherm studies. Moreover, the adsorption mechanism of heavy metals by NFL-S through surface complexation was also investigated, which shows great potential for water decontamination.展开更多
The recovery of heterogeneous catalysts can save costs and avoid secondary pollution,but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation,c...The recovery of heterogeneous catalysts can save costs and avoid secondary pollution,but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation,centrifugation and filtration.In this paper,we found that surface-defective metal sulfides/oxides(WS2,CuS,ZnS,MoS2,CdS,TiO2,MoO2 and ZnO)commonly used in advanced oxidation processes(AOPs)could be magnetically recovered at room temperature and atmospheric pressure by mechanically mixing with Fe3O4.Zeta potential,Raman,X-ray photoelectron spectroscopy(XPS)and electro-spin resonance(ESR)spectra were measured to explore the mechanism of the magnetic separation phenomenon.The exposed active metal sites on the surface of defective metal sulfides/oxides are beneficial for the formation of chemical bonds,which are combined with electrostatic force to be responsible for the magnetic separation.Moreover,other factors affecting the magnetic separation were also investigated,such as the addition of amount of Fe3O4,different solvents and particle sizes.Finally,WS2 was chosen to be applied as a co-catalyst in Fenton reaction,which could be well separated by the magnetic Fe3O4 to achieve the recycle of catalyst in Fenton reaction.Our research provides a general strategy for the recycle of metal sulfides/oxides in the catalytic applications.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
The recent development of selective oxidation of aromatic sulfides with molecular oxygen was highlighted.The sulfoxides and sulfones could be obtained by simply switching the reaction media,i.e.,bis(2-butoxyethyl)ethe...The recent development of selective oxidation of aromatic sulfides with molecular oxygen was highlighted.The sulfoxides and sulfones could be obtained by simply switching the reaction media,i.e.,bis(2-butoxyethyl)ether(BBE)or poly(ethylene glycol)dimethyl ether(PEGDME).The application of the high-boiling-point polyether as an initiator and green media can eliminate the need of large quantities of additives and volatile solvents.This strategy represents an economic and eco-friendly method that could find potential applications.展开更多
Developing sustainable and powerful heterogeneous catalytic systems to convert sulfides into high-value sulfoxide products has become a particularly appealing field and an arduous challenge.In this work,two porous pol...Developing sustainable and powerful heterogeneous catalytic systems to convert sulfides into high-value sulfoxide products has become a particularly appealing field and an arduous challenge.In this work,two porous polyoxometalate-pillared metal-organic frameworks,formulated as H_(3n)[Cu_(3)(pidc)_(2)(H_(2)O)_(2.5)]_(2)[PW_(12)O_(40)]_n·x H_(2)O (n=1.5,x=6 for 1,n=1,x=12 for 2;and H_(3)pidc=2-(3-pyridinyl)-1H-imidazole-4,5-dicarboxylic acid),were consciously manufacture and employed for heterogeneously catalyzed sulfide-sulfoxide transformation.Structural analysis shows that 1 and 2 exhibit similar porous frameworks with nearly identical two-dimensional metal-organic layers further pillared by tetradentate POM ligands with different coordination modes,which also result in the porosity of 1 being almost twice that of 2.In catalyzing the conversion of methyl phenyl sulfide (MPS) to methyl phenyl sulfoxide (MPSO),1 can convert nearly 100%of MPS into MPSO within 30 min,while 2 achieved the similar results requires 50 min.The higher activity of 1 may be attributed to its larger channel that can provide more active sites and more efficient mass transfer process.Systematic structure-activity analyses and mechanistic studies revealed dual-reaction pathways driven by POM sites and metal sites assisted by the structural microenvironment.展开更多
Poly(4-vinylpyridinium tribromide) was prepared from poly(4-vinylpyridin) and used for the selective oxidation of a variety of sulfides to the corresponding sulfoxides. The oxidation reaction was carried out heter...Poly(4-vinylpyridinium tribromide) was prepared from poly(4-vinylpyridin) and used for the selective oxidation of a variety of sulfides to the corresponding sulfoxides. The oxidation reaction was carried out heterogeneously in acetone/water, as green solvent, at room temperature.展开更多
The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/elec...The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/electrochemical side reactions are considered to be the origin of the interfacial deterioration.However,the influence of chemical and electrochemical side reactions on the interfacial deterioration is rarely studied specifically.In this work,the deterioration mechanism of the interface between LiNi0.85-xCo0.15AlxO2 and Li10GeP2S12 is investigated in detail by combining in/ex-situ Raman spectra and Electrochemical Impedance Spectroscopy(EIS).It can be determined that chemical side reaction between LiNi0.8Co0.15Al0.05O2 and Li10GeP2S12 will occur immediately once contacted,and the interfacial deterioration becomes more serious after charge-discharge process under the dual effects of chemical and electrochemical side reactions.Moreover,our research reveals that the interfacial stability and the cycle performance of ASSLB can be greatly enhanced by increasing Al-substitution for Ni in LiNi0.85-xCo0.15AlxO2.In particular,the capacity retention of LiNi0.6Co0.15Al0.25O2 cathode after 200 cycles can reach 81.9%,much higher than that of LiNi0.8Co0.15Al0.05O2 cathode(12.5%@200 cycles).This work gives an insight to study the interfacial issues between Ni-rich layered oxide cathode and sulfide electrolyte for ASSLBs.展开更多
基金financially supported by the National Natural Science Foundation of China(52072036,52272187)the China Petroleum&Chemical Corporation(SINOPEC)project(223128).
文摘All-solid-state batteries(ASSBs)assembled with sulfide solid electrolytes(SSEs)and nickel(Ni)-rich oxide cathode materials are expected to achieve high energy density and safety,representing potential candidates for the next-generation energy storage systems.However,interfacial issues between SSEs and Nirich oxide cathode materials,attributed to space charge layer,interfacial side reactions,and mechanical contact failure,significantly restrict the performances of ASSBs.The interface degradation is closely related to the components of the composite cathode and the process of electrode fabrication.Focusing on the influencing factors of interface compatibility between SSEs and Ni-rich oxide cathode,this article systematically discusses how cathode active materials(CAMs),electrolytes,conductive additives,binders,and electrode fabrication impact the interface compatibility.In addition,the strategies for the compatibility modification are reviewed.Furthermore,the challenges and prospects of intensive research on the degradation and modification of the SSE/Ni-rich cathode material interface are discussed.This review is intended to inspire the development of high-energy-density and high-safety all-solid-state batteries.
文摘In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic acid)ligand.Mg_(2)Ti-ABTC exhibited permanent porosity for N_(2),CO_(2),CH_(4),C_(2)H_(2),C_(2)H_(4),and C_(2)H_(6)gas adsorption.Further-more,Mg_(2)Ti-ABTC exhibited outstanding photocatalytic activity in the oxidation of aromatic sulfides to the corre-sponding sulfoxides under ambient air conditions.Mechanism studies reveal that photoinduced holes(h^(+)),the super-oxide radical(·O_(2)^(-)),and singlet oxygen(^(1)O_(2))are pivotal species involved in the photocatalytic oxidation reaction.
基金National Natural Science Foundation of China,Grant/Award Number:22179029Fundamental Research Funds for the Central Universities,Grant/Award Number:buctrc202324+2 种基金Young Elite Scientists Sponsorship Program by BAST,Grant/Award Number:BYESS2023093Ministero dell'Istruzione,dell'Universitàe della Ricerca,Grant/Award Number:2022FNL89YKempestiftelserna。
文摘Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.
基金supported by the National Natural Science Foundation of China(no.22109023,no.22179022,and no.22209027)the Youth Innovation Fund of Fujian Province(no.2021J05043 and no.2022J05046)+5 种基金the National Key Research and Development Program of China(2023YFC3906300)the FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform(no.2022-P-027)the·“Hundred Talents·Plan”of Fujian Provincethe“Top Young Talents of Young Eagle”Program of Fujian Provincethe Award Program for Fujian Minjiang Scholar Professorshipthe Talent Fund Program of Fujian Normal University.
文摘Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors.However,the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability.Herein,we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance.Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid(de)intercalation near the surface/edge of the material,thereby enhancing its pseudocapacitive sodium storage properties.Consequently,the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g^(-1) at 1 A g^(-1) and an outstanding rate capability of 450.60 mAh g^(-1) at 3 A g^(-1).This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金Natural Science Foundation of China (Grant No.30672460 and 30772565)Shanghai Pujiang Research Grants (06PJ14018)the Chinese Ministry of Science and Technology 973 Project (Grant No. 2007CB512006)
文摘The relationship between hydrogen sulfide (H2S) and nitric oxide (NO) in myocardial infarction (MI) has not been previously reported. In the current investigation, we sought to determine the roles of both H2S and NO in MI in rats. Animals were randomly divided into 5 groups and treated with L-NG-nitro arginine methyl ester (L-NAME), sildenafil, saline, propargylglycine (PAG) and L-cysteine, respectively, for 1 week prior to performing MI surgery or sham operation. The mortality rates were lower in sildenafil and L-cysteine treated rats in the MI group. The infarct area was significantly reduced in sildenafil and L-cysteine treated rats. Moreover, plasma H2S measurements revealed that the level in the sildenafil treated group was lower than in the L-NAME treated MI group, which was consistent with an observed decrease in cystathionine gamma-lyase (CSE) enzyme activity. CSE protein expression level in the L-NAME treated MI group was significantly higher than in sildenafil treated MI group. eNOS protein content in the L-cysteine treated MI group was lower than in the PAG treated MI group and eNOS gene expression is significantly decreased in the L-cysteine treated rats. We demonstrated that endogenous H2S and NO are cardioprotective in the rat model of MI. Indeed, both the H2S-CSE and NO-NOS system appear to have a mutual down-regulation effect in MI process in our experimental rat model.
基金financially supported by the National Natural Science Foundation of China(No.22071043).
文摘By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68H_(2)O(1)has been successfully obtained via one-pot method and systematically characterized by IR,XPS,solid UV spectra,PXRD pattern,and TGA analysis.The analysis of X-ray crystallography exhibits that compound 1 crystallizes in the triclinic space group P-1 and presents a novel square-shaped Zr-substituted tetrameric polyoxometalate.The catalytic oxidation of sulfides by 1 are carried out,which demonstrate that 1 exhibits a good performance for the catalytic oxidation of sulfides to sulfones with high conversion(100%)and high selectivity(100%).
基金supported by the National Natural Science Foundation of China (30970288 and 31170237)the National Science Foundation of Shandong Province, China(ZR2010CM024)the Foundation of State Key Laboratory of Plant Physiology and Biochemistry, China(SKLPPBKF11001)
文摘Pharmacological, laser scanning confocal microscopic (LSCM), and spectrophotographic approaches were used to study the roles of hydrogen sulfide (H2S) and nitric oxide (NO) in signaling transduction of stomatal movement in response to ethylene in Viciafaba L. Ethylene treatment resulted in the dose-dependent stomatal closure under light, and this effect was blocked by the inhibitors of H2S biosynthesis in V. faba L. Additionally, ethylene induces H2S generation and increases L-/D-cysteine desulfhydrase (pyridoxalphosphate-dependent enzyme) activity in leaves of V. faba L. Inhibitors of H2S biosynthesis have no effect on the ethylene-induced stomatal closure, NO accumulation, and nitrate reductase (NR) activity in guard cells or leaves of II. faba L. Moreover, the ethylene-induced increase of H2S levels and L-/D- cysteine desulfhydrase activity declined when NO generation was inhibited. Therefore, we conclude that H2S and NO probably are involved in the signal transduction pathway of ethylene-induced stomatal closure. H2S may represent a novel component downstream of NO in the ethylene-induced stomatal movement in V. faba L.
基金financially supported by the Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)the Natural Science Foundation of Jilin Province of China(No.20240101098JC)the National Natural Science Foundation of China(No.22469002)。
文摘Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage.
基金supported by the National Natural Science Foundation for Young Scientists of China(Nos:21502071 and 21302068)the Natural Science Foundation of Jiangsu Province,China(Nos:BK20140154 and BK20130127)the Fundamental Research Funds for the Central Universities(Nos:JUSRP51411B and JUSRP51629B)
文摘In the present study, a series of novel nitric oxide-hydrogen sulfide releasing derivatives of(S)-3-n-butylphthalide((S)-NBP) were designed, synthesized, and evaluated as potential antiplatelet agents. Compound NOSH-NBP-5 displayed the strongest activity in inhibiting the arachidonic acid(AA)- and adenosine diphosphate(ADP)-induced platelet aggregation in vitro, with 3.8- and 7.0-fold more effectiveness than(S)-NBP, respectively. Furthermore, NOSH-NBP-5 could release moderate levels of NO and H2 S, which would be beneficial in improving cardiovascular and cerebral circulation. Moreover, NOSH-NBP-5 could release(S)-NBP when incubated with rat brain homogenate. In conclusion, these findings may provide new insights into the development of novel antiplatelet agents for the treatment of thrombosis-related ischemic stroke.
基金financially supported by the National Natural Science Foundation of China(No.22275138 and 22271219)
文摘Electrochemical oxidation of 5-hydroxymethylfurfural(HMFOR),featuring favorable thermodynamics,presents a promising alternative to the conventional oxygen evolution reaction for energy-saving hydrogen(H_(2))production coupled with biomass upgrading.However,the multiple proton-coupled electron transfer steps in HMFOR result in sluggish kinetics,highlighting the development of highly efficient electrocatalysts.Herein,a high-entropy amorphous MoCrCoNiZn-S grown on nickel foam(HEAS@NF)is constructed via a metal organic framework-derived strategy to efficiently convert HMF to 2,5-furandicarboxylic acid(FDCA).The abundant active sites on the HEAS@NF facilitate the structural evolution to oxyhydroxides that possess strong reducibility for HMF dehydrogenation,leading to superior HMFOR performance compared to sulfides with fewer metal elements.In situ electrochemical impedance spectroscopy results confirm significantly favored kinetics to HMFOR over OER on the HEAS@NF,resulting in a remarkable98%HMF conversion,with FDCA yield and Faradaic efficiency of 98%and 94%even at a concentrated 100 mM HMF.A two-electrode flow electrolyzer equipped with the bifunctional HEAS@NF enables simultaneous cathodic H2and anodic FDCA production with an electricity saving of 10.8%.This study presents an effective strategy to inspire the exploration of high-entropy catalysts for biomass-assisted H2production.
文摘DBUH-Br_3 catalyzed selective conversion of sulfides to sulfoxides in the presence of H_2O_2 as oxidizing agent is described.The reaction was performed selectively at room temperature and relatively short reaction times.
基金financially supported by the National Natural Science Foundation of China (No. 21675127)the Shaanxi Provincial Science Fund for Distinguished Young Scholars (No. 2018JC-011)
文摘Remaining largely under-appreciated, a majority of metal ion sorbents are limited in their target selectivity. In this work, a 3D sulfide intercalated NiFe-layered double hydroxide (NFL-S) hierarchical sorbent has been synthesized for selective heavy metal removal. The intercalation of sulfurated groups in the interlayer of the layered double hydroxide (LDH) nanosheets endows NFL-S as a selective heavy metal ion filter;the selectivity of NFL-S for heavy metals is in the order of Pb^2+> Cu^2+≥ Zn^2+> Cd^2+> Mn^2+, and NFL-S has high kd values for Pb2+(~10^6 mL/g) and Cu2+(~10^5 mL/g). Scanning electron microscopy. X-ray photoelectron spectroscopy and powder X-ray diffraction were used to analyze the composition of the as-prepared nanoadsorbent. The selective adsorption behavior was systematically studied using batch experiments, and the performance was evaluated through kinetic and isotherm studies. Moreover, the adsorption mechanism of heavy metals by NFL-S through surface complexation was also investigated, which shows great potential for water decontamination.
基金financially supported by the State Key Research Development Program of China (No. 2016YFA0204200the National Natural Science Foundation of China (Nos. 21822603, 21773062, 21577036, 21377038 and 21237003)+1 种基金Shanghai Pujiang Program (No. 17PJD011)the Fundamental Research Funds for the Central Universities (No. 22A201514021)
文摘The recovery of heterogeneous catalysts can save costs and avoid secondary pollution,but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation,centrifugation and filtration.In this paper,we found that surface-defective metal sulfides/oxides(WS2,CuS,ZnS,MoS2,CdS,TiO2,MoO2 and ZnO)commonly used in advanced oxidation processes(AOPs)could be magnetically recovered at room temperature and atmospheric pressure by mechanically mixing with Fe3O4.Zeta potential,Raman,X-ray photoelectron spectroscopy(XPS)and electro-spin resonance(ESR)spectra were measured to explore the mechanism of the magnetic separation phenomenon.The exposed active metal sites on the surface of defective metal sulfides/oxides are beneficial for the formation of chemical bonds,which are combined with electrostatic force to be responsible for the magnetic separation.Moreover,other factors affecting the magnetic separation were also investigated,such as the addition of amount of Fe3O4,different solvents and particle sizes.Finally,WS2 was chosen to be applied as a co-catalyst in Fenton reaction,which could be well separated by the magnetic Fe3O4 to achieve the recycle of catalyst in Fenton reaction.Our research provides a general strategy for the recycle of metal sulfides/oxides in the catalytic applications.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
文摘The recent development of selective oxidation of aromatic sulfides with molecular oxygen was highlighted.The sulfoxides and sulfones could be obtained by simply switching the reaction media,i.e.,bis(2-butoxyethyl)ether(BBE)or poly(ethylene glycol)dimethyl ether(PEGDME).The application of the high-boiling-point polyether as an initiator and green media can eliminate the need of large quantities of additives and volatile solvents.This strategy represents an economic and eco-friendly method that could find potential applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 21371027, 20901013)Natural Science Foundation of Liaoning Province (No. 2015020232)Fundamental Research Funds for the Central Universities (Nos. DUT19LK01, DUT15LN18)。
文摘Developing sustainable and powerful heterogeneous catalytic systems to convert sulfides into high-value sulfoxide products has become a particularly appealing field and an arduous challenge.In this work,two porous polyoxometalate-pillared metal-organic frameworks,formulated as H_(3n)[Cu_(3)(pidc)_(2)(H_(2)O)_(2.5)]_(2)[PW_(12)O_(40)]_n·x H_(2)O (n=1.5,x=6 for 1,n=1,x=12 for 2;and H_(3)pidc=2-(3-pyridinyl)-1H-imidazole-4,5-dicarboxylic acid),were consciously manufacture and employed for heterogeneously catalyzed sulfide-sulfoxide transformation.Structural analysis shows that 1 and 2 exhibit similar porous frameworks with nearly identical two-dimensional metal-organic layers further pillared by tetradentate POM ligands with different coordination modes,which also result in the porosity of 1 being almost twice that of 2.In catalyzing the conversion of methyl phenyl sulfide (MPS) to methyl phenyl sulfoxide (MPSO),1 can convert nearly 100%of MPS into MPSO within 30 min,while 2 achieved the similar results requires 50 min.The higher activity of 1 may be attributed to its larger channel that can provide more active sites and more efficient mass transfer process.Systematic structure-activity analyses and mechanistic studies revealed dual-reaction pathways driven by POM sites and metal sites assisted by the structural microenvironment.
基金Financial support for this work by the Ilam University,Ilam,Iran is gratefully acknowledged
文摘Poly(4-vinylpyridinium tribromide) was prepared from poly(4-vinylpyridin) and used for the selective oxidation of a variety of sulfides to the corresponding sulfoxides. The oxidation reaction was carried out heterogeneously in acetone/water, as green solvent, at room temperature.
基金financially supported partly by the National Key Research and Development Program of China(2018YFE0111600)Tianjin Sci.&Tech.Program(17YFZCGX00560,18ZXJMTG00040,19JCZDJC31800)。
文摘The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/electrochemical side reactions are considered to be the origin of the interfacial deterioration.However,the influence of chemical and electrochemical side reactions on the interfacial deterioration is rarely studied specifically.In this work,the deterioration mechanism of the interface between LiNi0.85-xCo0.15AlxO2 and Li10GeP2S12 is investigated in detail by combining in/ex-situ Raman spectra and Electrochemical Impedance Spectroscopy(EIS).It can be determined that chemical side reaction between LiNi0.8Co0.15Al0.05O2 and Li10GeP2S12 will occur immediately once contacted,and the interfacial deterioration becomes more serious after charge-discharge process under the dual effects of chemical and electrochemical side reactions.Moreover,our research reveals that the interfacial stability and the cycle performance of ASSLB can be greatly enhanced by increasing Al-substitution for Ni in LiNi0.85-xCo0.15AlxO2.In particular,the capacity retention of LiNi0.6Co0.15Al0.25O2 cathode after 200 cycles can reach 81.9%,much higher than that of LiNi0.8Co0.15Al0.05O2 cathode(12.5%@200 cycles).This work gives an insight to study the interfacial issues between Ni-rich layered oxide cathode and sulfide electrolyte for ASSLBs.