期刊文献+
共找到67,376篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional amorphous N-doped cobalt-copper sulfide nanostructures for efficient full water splitting
1
作者 Jin-Chun He Ding-Cen Duan +7 位作者 Yun-Cheng Du Zong-Qin Ding Sha-Sha Yan Xin Chen Hui Zhang Xuan-Xuan Bi Rong-Yue Wang Xing-Bo Ge 《Rare Metals》 2025年第5期3080-3093,共14页
The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transitio... The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts. 展开更多
关键词 Cobalt sulfide/copper sulfide N-DOPING Three-dimensional electrode Water splitting Synergistic effects
原文传递
Nanoflower Copper Sulfide as Cathode Materials for Magnesium Ion Batteries
2
作者 He Yuantai Wu Liang +3 位作者 Shi Yongan Zhong Zhiyong Yao Wenhui Pan Fusheng 《稀有金属材料与工程》 北大核心 2025年第3期545-553,共9页
CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesi... CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries. 展开更多
关键词 copper sulfide nanoflower magnesium ion batteries CTAB hydrothermal synthesis
原文传递
Bacterial-mediated recovery of copper from low-grade copper sulfide using fly ash and bacterial community dynamics
3
作者 Wei Chen Ming Zhang +1 位作者 Shenghua Yin Yun Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1044-1055,共12页
Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigat... Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigate bioleaching behaviors and bacterial community succession.Results showed that copper recovery,bacterial concentration,total proportion of main leaching bacteria including Acidithiobacillus ferrooxidans,Acidibacillus ferrooxidans,and Leptospirillum ferriphilum,were improved through using appropriate dosage of fly ash.The maximum copper recovery of 79.87%and bacterial concentration of 7.08×10^(7)cells·mL^(-1)were obtained after us-ing 0.8 g·L^(-1)fly ash.Exclusive precipitation including Zn(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)and Mg(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)was found in sample added 0.8 g·L^(-1)fly ash,which reduced the effect of hazardous ions on bacteria and thus contributing to bacterial proliferation.Bacterial com-munity structure was differentiated,which indicated difference between original inoculation and sample used 0.8 g·L^(-1)fly ash was less than others.Total proportion of the three microorganism above accounted for more than 95%in all tests,especially in sample with 0.8 g·L^(-1)fly ash up to 99.81%.Cl^(-)and Ag^(+)contained in fly ash can act as catalytic agent,which contributed to conversion from smooth and dense passivation layer to sparse and scattered one,and therefore improving contact between ores,lixiviant,and bacteria.Using appropri-ate dosage of fly ash showed prospects in bioleaching. 展开更多
关键词 low-grade copper sulfides fly ash bioleaching behavior bacterial community succession
在线阅读 下载PDF
Copper indium sulfide colloidal quantum dots: Advances in synthesis, structure-optoelectronic properties, and applications
4
作者 Yiming Xia Nilotpal Kapuria +7 位作者 Mingrui He Uma VGhorpade Xinyao Guo Bohan Hao Seung Wook Shin Ziv Hameiri Xiaojing Hao Mahesh P.Suryawanshi 《Advanced Powder Materials》 2025年第3期12-31,共20页
The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing area... The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field. 展开更多
关键词 copper indium sulfide Quantum dots Core/shell Optoelectronic properties Luminescent solar concentrators Photovoltaics PHOTOCATALYSIS LEDS BIOIMAGING
在线阅读 下载PDF
Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution
5
作者 Xinlong Zheng Yiming Song +12 位作者 Chongtai Wang Qizhi Gao Zhongyun Shao Jiaxin Lin Jiadi Zhai Jing Li Xiaodong Shi Daoxiong Wu Weifeng Liu Wei Huang Qi Chen Xinlong Tian Yuhao Liu 《Chinese Journal of Catalysis》 2025年第7期22-70,共49页
The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,whi... The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature.In this regard,photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method.The recently developed copper-and zinc-based multinary metal sulfide(MMS)semiconductor photocatalysts exhibit the advantages of suitable bandgap,wide light-harvesting range,and flexible elemental composition,thus possessing great potential for achieving considerable photocatalytic hydrogen evolution(PHE)performance.Despite great progress has been achieved,the current photocatalysts still cannot meet the commercial application demands,which highlights the mechanisms understanding and optimization strategies for efficient PHE.Herein,the basic mechanisms of PHE,and effective optimization strategies are firstly introduced.Afterwards,the research process and the performance of copper-and zinc-based MMS photocatalysts,are thoroughly reviewed.Finally,the unresolved issues,and challenges hindering the achievement of overall water splitting have been discussed. 展开更多
关键词 Multinary metal sulfide Semiconductor photocatalyst Photocatalytic hydrogen evolution Optimization strategy Overall water splitting
在线阅读 下载PDF
Engineering of copper sulfide-based nanomaterials for thermoelectric application
6
作者 Binqi He Kai Zhang Maiyong Zhu 《Green Energy & Environment》 2025年第4期619-688,共70页
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.... In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials. 展开更多
关键词 NANOMATERIALS thermoelectric materials organic thermoelectric materialsthephonon diminishing energy resources sustainable development solid phase method greenhouse effectthermoelectric materials inorganic thermoelectric materialscopper sulfide compounds
在线阅读 下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption 被引量:1
7
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces sulfides Polarization coupling Electromagnetic wave absorption
在线阅读 下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2 被引量:2
8
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINE-Β-SYNTHASE nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NEUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
暂未订购
Flammability of sulfide solid-state electrolytesβ-Li_(3)PS_(4)and Li_(6)PS_(5)Cl:Volatilization and autoignition of sulfur vapor-New insight into all-solid-state battery thermal runaway 被引量:2
9
作者 Thomas A.Yersak Hernando J.Gonzalez Malabet +3 位作者 Vamakshi Yadav Nicholas P.W.Pieczonka Will Collin Mei Cai 《Journal of Energy Chemistry》 2025年第3期651-660,共10页
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l... This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization. 展开更多
关键词 sulfide Solid-state electrolyte FLAMMABILITY ALL-SOLID-STATE Battery Thermal runaway
在线阅读 下载PDF
Artificial intelligence optimization and controllable slow-release iron sulfide realizes efficient separation of copper and arsenic in strongly acidic wastewater 被引量:3
10
作者 Xingfei Zhang Chenglong Lu +5 位作者 Jia Tian Liqiang Zeng Yufeng Wang Wei Sun Haisheng Han Jianhua Kang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期293-307,共15页
Iron sulfide(FeS)is a promising material for separating copper and arsenic from strongly acidic wastewater due to its S^(2-)slow-release effect.However,uncertainties arise because of the constant changes in wastewater... Iron sulfide(FeS)is a promising material for separating copper and arsenic from strongly acidic wastewater due to its S^(2-)slow-release effect.However,uncertainties arise because of the constant changes in wastewater composition,affecting the selection of operating parameters and FeS types.In this study,the aging method was first used to prepare various controllable FeS nanoparticles to weaken the arsenic removal ability without affecting the copper removal.Orthogonal experiments were conducted,and the results identified the Cu/As ratio,H_(2)SO_(4) concentration,and FeS dosage as the three main factors influencing the separation efficiency.The backpropagation artificial neural network(BP-ANN)model was established to determine the relationship between the influencing factors and the separation efficiency.The correlation coefficient(R)of overall model was 0.9923 after optimizing using genetic algorithm(GA).The BP-GA model was also solved using GA under specific constraints,predicting the best solution for the separation process in real-time.The predicted results show that the high temperature and long aging time of FeS were necessary to gain high separation efficiency,and the maximum separation factor can reached 1,400.This study provides a suitable sulfurizing material and a set of methods and models with robust flexibility that can successfully predict the separation efficiency of copper and arsenic from highly acidic environments. 展开更多
关键词 FeS nanoparticles AGING sulfide precipitation Orthogonal experiment Artificial neural network Prediction
原文传递
A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells
11
作者 ZHANG Linfang YIN Wenzhu YIN Gui 《无机化学学报》 北大核心 2025年第3期540-548,共9页
Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether ... Using 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran(TCF)as a near-infrared fluorescent chromophore,we designed and synthesized a TCF-based fluorescent probe TCF-NS by introducing 2,4-dinitrophenyl ether as the recognized site for H_(2)S.The probe TCF-NS displayed a rapid-response fluorescent against H_(2)S with high sensitivity and selection but had no significant fluorescence response to other biothiols.Furthermore,TCF-NS was applied to sense H_(2)S in living cells successfully with minimized cytotoxicity and a large Stokes shift. 展开更多
关键词 hydrogen sulfide near⁃infrared fluorescence probe cell imaging
在线阅读 下载PDF
The use of a ternary metal sulfide loading on carbon fibers as the sulfur host for high performance low-temperature lithium sulfur batteries
12
作者 HE Xin ZUO Huai-yang +4 位作者 XIAO Ru QU Zhuo-yan SUN Zhen-hua WANG Bao Li Feng 《新型炭材料(中英文)》 北大核心 2025年第1期167-177,共11页
The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nit... The use of lithium-sulfur(Li-S)batteries is limited by sulfur redox reactions involving multi-phase transformations,especially at low-temperatures.To address this issue,we report a material(FCNS@NCFs)consisting of nitrogen-doped carbon fibers loaded with a ternary metal sulf-ide((Fe,Co,Ni)_(9)S_(8))for use as the sulfur host in Li-S batteries.This materi-al was prepared using transfer blot filter paper as the carbon precursor,thiourea as the source of nitrogen and sulfur,and FeCl_(3)·6H_(2)O,CoCl_(2)·6H_(2)O and NiCl_(2)·6H_(2)O as the metal ion sources.It was synthesized by an impreg-nation method followed by calcination.The nitrogen doping significantly in-creased the conductivity of the host,and the metal sulfides have excellent catalytic activities.Theoretical calculations,and adsorption and deposition experiments show that active sites on the surface of FCNS@NCFs selectively adsorb polysulfides,facilitate rapid adsorption and conversion,prevent cathode passivation and inhib-it the polysulfide shuttling.The FCNS@NCFs used as the sulfur host has excellent electrochemical properties.Its initial dis-charge capacity is 1639.0 mAh g^(−1) at 0.2 C and room temperature,and it remains a capacity of 1255.1 mAh g^(−1) after 100 cycles.At−20~C,it has an initial discharge capacity of 1578.5 mAh g^(−1) at 0.2 C,with a capacity of 867.5 mAh g^(−1) after 100 cycles.Its excellent performance at both ambient and low temperatures suggests a new way to produce high-performance low-temper-ature Li-S batteries. 展开更多
关键词 Lithium sulfur batteries Low temperature Transition metal sulfides Sulfur conversion kinetics
在线阅读 下载PDF
Growth behavior of heavy metal sulfide particles:A comparison between gas-liquid and liquid-liquid sulfidation
13
作者 Chunxue Li Meiqing Shi +5 位作者 Qingzhu Li Jiahui Wu Xu Yan Qingwei Wang Zhang Lin Liyuan Chai 《Journal of Environmental Sciences》 2025年第8期615-623,共9页
Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle... Sulfide precipitation is an effective method for treating acidic heavy metal wastewater.However,the process often generates tiny particles with poor settling performance.The factors and mechanisms influencing particle size and settling performance remain unclear.In this study,the growth behavior of CuS particles generated by two sulfide precipitation methods,gas-liquid and liquid-liquid sulfidation,was investigated.The effects of acidity,sulfur-to-copper molar ratio,and temperature on particle size were analyzed.The results showed that increasing the temperature had an adverse effect on CuS particle growth.Additionally,we found that acidity and sulfur-to-copper molar ratio had a more significant impact on particle growth in the liquid-liquid sulfidation system than in the gas-liquid sulfidation system.Based on supersaturation calculations and XPS analysis,it is found that particle growth in gas-liquid sulfidation systems is mainly influenced by supersaturation,while particle growth in liquid-liquid sulfidation systems is mainly affected by surface charge.This study provides valuable insights into the factors that influence particle growth in sulfide precipitation and can inform the development of strategies to improve the effective precipitation of sulfide nanoparticles in acidic wastewater. 展开更多
关键词 sulfide precipitation Liquid-liquid sulfidation Gas-liquid sulfidation SUPERSATURATION Surface charge Particle growth
原文传递
Biomass thermal decomposition induced hydrogen sulfide blooming in thermal recovery reservoirs
14
作者 Ying-Jia Zhu Yun-Yang Wan +2 位作者 Yan Tian Hong-Mei Mu Tong-Gang Zhang 《Petroleum Science》 2025年第4期1802-1810,共9页
High concentration of secondary hydrogen sulfide(sH_(2)S) in thermal recovery reservoirs of Liaohe Oilfield,NE China was concluded to originate from thermochemical sulfate reduction(TSR),and no biotic source of H_(2)S... High concentration of secondary hydrogen sulfide(sH_(2)S) in thermal recovery reservoirs of Liaohe Oilfield,NE China was concluded to originate from thermochemical sulfate reduction(TSR),and no biotic source of H_(2)S under abundant biomass has been reported in these presumed steam sterilized reservoirs ever before.In this study,we propose a new mechanism,biomass thermal decomposition for sulfur compounds(BTDS),to interpret the increasing of sH_(2)S.Sulfur of cells' dry weight took 0.20%-1.92% of the active strains isolated from the in-situ thermal recovery reservoirs of Liaohe Oilfield.When microbial organic sulfur compounds(MOSC) in biomass were exposed to injected steam,it resulted in the BTDS process.The isolated Bacillus subtilis D3(G+) and Pseudomonas aeruginosa XJ14(G-) were chosen to simulate this process.About 36% of sulfur in MOSC emitted as H_(2)S in steam chamber by BTDS.The δ^(34)S of H_(2)S from produced gas ranged from 8.7‰ to 17.0‰,close to the δ^(34)S of H_(2)S 11.2‰ from BTDS simulation experiment.It provides new insight into the contribution and sulfur cycle made by subterranean microorganisms on H_(2)S formation. 展开更多
关键词 Thermal recovery reservoir Microbial abundance Hydrogen sulfide Biomass thermal decomposition for sulfide Sulfur isotope
原文传递
A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone
15
作者 Dongsheng Yang Zixin Li +4 位作者 Yaoyao Lian Ziyao Fu Tianjiao Li Pengtao Ma Guoping Yang 《Chinese Chemical Letters》 2025年第3期566-569,共4页
By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68... By introduction of hydrogen peroxide into the reaction system of ZrOCl_(2)·8H_(2)O and K14[As_(2)W_(19)O_(67)(H_(2)O)],a novel polyoxometalate K_(8)Na_(19.5)H_(0.5)[Zr_(2)(O_(2))_(2)(β-AsVW_(10)O_(38))]4·68H_(2)O(1)has been successfully obtained via one-pot method and systematically characterized by IR,XPS,solid UV spectra,PXRD pattern,and TGA analysis.The analysis of X-ray crystallography exhibits that compound 1 crystallizes in the triclinic space group P-1 and presents a novel square-shaped Zr-substituted tetrameric polyoxometalate.The catalytic oxidation of sulfides by 1 are carried out,which demonstrate that 1 exhibits a good performance for the catalytic oxidation of sulfides to sulfones with high conversion(100%)and high selectivity(100%). 展开更多
关键词 Zr-substituted Square-shaped Polyoxotungstates Catalytic oxidation sulfide
原文传递
Combination losartan with hyaluronic acid modified diethyldithiocarbamate loaded hollow copper sulfide nanoparticles for the treatment of breast cancer and metastasis
16
作者 Haili Hu Weiwei Zhang +10 位作者 Lei Lei Fan Tong Huilin Zhang Yiwei Zhang Wenqin Yang Yilu Tang Ruyi Lin Xue Xia Jiamei Li Shiyong Song Huile Gao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期406-414,共9页
The application of photothermal therapy(PTT)is greatly limited by the low accumulation of photothermal agents,uneven photothermal distribution,and heat endurance of cancer cells.Worse still,despite PTT enhances immuno... The application of photothermal therapy(PTT)is greatly limited by the low accumulation of photothermal agents,uneven photothermal distribution,and heat endurance of cancer cells.Worse still,despite PTT enhances immunogenicity,the anti-tumor immune efficacy is still unsatisfactory due to the inefficient immunogenic cell death(ICD)induction and poor infiltration of immune cells.To solve the above problems of PTT,we developed hyaluronic acid(HA)modified hollow copper sulfide nanoparticles encapsulating diethyldithiocarbamate(DDTC)to construct a breast tumor targeting and near infrared(NIR)photo-responsive drug delivery system(D-HCuS@HA),which further combined with losartan to improve the accumulation and penetration in the tumor site.Upon irradiation,D-HCuS@HA realized enhanced PTT and released cytotoxic Cu(DDTC)_(2)to eliminate heat endurance tumor cells,thereby enhancing antitumor effect and inducing effective ICD.Moreover,the combination with losartan could remodel the tumor microenvironment,allowing more T cells to infiltrate into the tumor,and significantly inhibiting the occurrence and development of metastatic tumors.In vitro/vivo results revealed the great potential of D-HCuS@HA combined with losartan,which provides a new paradigm for anti-tumor and anti-metastases. 展开更多
关键词 Targeted drug delivery system Hollow copper sulfide nanoparticles Photothermal therapy Hyaluronic acid Breast cancer ANTI-METASTASIS
原文传递
Modification strategies of molybdenum sulfide towards practical high-performance lithium-sulfur batteries:a review
17
作者 Xin Xu Yan Guo +3 位作者 Hua-Jun Zhao Yi-Ke Huang Jun-Po Guo Huai-Yu Shao 《Rare Metals》 2025年第3期1556-1576,共21页
Lithium-sulfur batteries(LSBs)have undoubtedly become one of the most promising battery systems due to their high energy density and the cost-effectiveness of sulfur cathodes.However,challenges,such as the shuttle eff... Lithium-sulfur batteries(LSBs)have undoubtedly become one of the most promising battery systems due to their high energy density and the cost-effectiveness of sulfur cathodes.However,challenges,such as the shuttle effect from soluble long-chain lithium polysulfides(LiPSs)and the low conductivity of active materials,hinder their commercialization.Under this circumstance,molybdenum sulfide(MoS_(2))has attracted widespread attention due to its unique physicochemical properties,particularly its capability to mitigate the shuttle effect in LSBs through electrostatic or chemical bonds.Nonetheless,the industrial application of MoS_(2)in LSBs is limited by the inertness of its basal surface and inadequate electron transfer properties.This review mainly introduces various modification strategies of MoS_(2)materials in LSBs and their effects on electrochemical and catalytic performance.Unlike previous reviews and related papers,detailed discussions were conducted on the specific mechanisms of each modification strategy,including(1)shape manipulation,(2)support engineering,(3)heterostructure engineering,(4)defect engineering,(5)interlayer engineering,(6)phase engineering,(7)strain engineering,(8)hybridization.Comprehensive conclusions and outlook on the development of MoS_(2)as an abundant electrocatalyst for LSBs are also discussed in the end. 展开更多
关键词 Lithium-sulfur batteries Molybdenum sulfide Modification strategies
原文传递
S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S,N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution
18
作者 Bin Zhao Heping Luo +6 位作者 Jiaqing Liu Sha Chen Han Xu Yu Liao Xue Feng Lu Yan Qing Yiqiang Wu 《Chinese Chemical Letters》 2025年第5期733-739,共7页
Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carb... Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carbon((Co_(9)S_(8)/CoS)@SNC)microleaf arrays,which are rooted on S-doped carbonized wood fibers(SCWF).Benefiting from the synergistic electronic interactions on heterointerfaces and the accelerated mass transfer by array structure,the obtained self-supporting(Co_(9)S_(8)/CoS)@SNC/SCWF electrode exhibits superior performance toward alkaline oxygen evolution reaction(OER)with an ultra-low overpotential of 274 mV at 1000 mA/cm^(2),a small Tafel slope of 48.84 mV/dec,and ultralong stability up to 100 h.Theoretical calculations show that interfacing Co_(9)S_(8)with CoS can upshift the d-band center of the Co atoms and strengthen the interactions with oxygen intermediates,thereby favoring OER performance.Furthermore,the(Co_(9)S_(8)/CoS)@SNC/SCWF electrode shows outstanding rechargeability and stable cycle life in aqueous Zn-air batteries with a peak power density of 201.3 mW/cm^(2),exceeding the commercial RuO_(2)and Pt/C hybrid catalysts.This work presents a promising strategy for the design of high-current-density OER electrocatalysts from sustainable wood fiber resources,thus promoting their practical applications in the field of electrochemical energy storage and conversion. 展开更多
关键词 ELECTROCATALYST HETEROJUNCTION Oxygen evolution reaction Wood fiber sulfide
原文传递
Provincial anthropogenic emission inventory of carbonyl sulfide(COS)in China from 2015 to 2021
19
作者 JIANG Yunhao CHEN Bin +4 位作者 WANG Shaoqiang LI Tingyu CHEN Shiliang WANG Lunche WANG Lizhe 《Journal of Geographical Sciences》 2025年第5期923-940,共18页
Carbonyl sulfide(COS)is an effective tracer for estimating Gross Primary Productivity(GPP)in the carbon cycle.As the largest contribution to the atmosphere,anthropogenic COS emissions must be accurately quantified.In ... Carbonyl sulfide(COS)is an effective tracer for estimating Gross Primary Productivity(GPP)in the carbon cycle.As the largest contribution to the atmosphere,anthropogenic COS emissions must be accurately quantified.In this study,an anthropogenic COS emission inventory from 2015 to 2021 was constructed by applying the bottom-up approach based on activity data from emission sources.China’s anthropogenic COS emissions increased from approximately 171 to 198 Gg S yr^(-1)from 2015-2021,differing from the trends of other pollutants.Despite an initial decline in COS emissions across sectors during the early stage of the COVID-19 pandemic,a rapid rebound in emissions occurred following the resumption of economic activities.In 2021,industrial sources,coal combustion,agriculture and vehicle exhaust accounted for 76.8%,12.3%,10.5%and 0.4%of total COS emissions,respectively.The aluminum industry was the primary COS emitter among industrial sources,contributing40.7% of total emissions.Shandong,Shanxi,and Zhejiang were the top three provinces in terms of anthropogenic COS emissions,reaching 39,21 and 17 Gg S yr-1,respectively.Provincial-level regions(hereafter province)with high COS emissions are observed mainly in the eastern and coastal regions of China,which,together with the wind direction,helps explain the pattern of high COS concentrations in the Western Pacific Ocean in winter.The Green Contribution Coefficient of COS(GCCCOS)was used to assess the relationship between GDP and COS emissions,highlighting the disparity between GDP and COS contributions to green development.As part of this analysis,relevant recommendations are proposed to address this disparity.The COS emission inventory in our study can be used as input for the Sulfur Transport and Deposition Model(STEM),reducing uncertainties in the atmospheric COS source?sink budget and promoting understanding of the atmosphere sulfur cycle. 展开更多
关键词 anthropogenic emissions emission inventory carbonyl sulfide provincial scale
原文传递
Distinct Enrichment Mechanisms of PGE in Different Orebodies of the Jinchuan Ni-Cu-PGE Sulfide Deposit,Western China
20
作者 YANG Yan FENG Yantong +2 位作者 ZHANG Mingjie ZHU Lihua WANG Aowei 《Acta Geologica Sinica(English Edition)》 2025年第4期1059-1073,共15页
The Jinchuan magmatic Ni-Cu-PGE deposit is the largest single Ni sulfide deposit in the world.It consists primarily of orebody-24 in segment I,and orebody-1 and orebody-2 in segment II.The contents of platinum-group e... The Jinchuan magmatic Ni-Cu-PGE deposit is the largest single Ni sulfide deposit in the world.It consists primarily of orebody-24 in segment I,and orebody-1 and orebody-2 in segment II.The contents of platinum-group elements(PGE)in these orebodies decrease significantly from west to east across the deposit.However,the PGE characteristics of platinum-group minerals(PGM)and alloys,as well as their roles during mineralization in different orebodies,remain unclear.In this study,PGM and alloy occurrences in orebody-24 and orebody-2 had been observed by scanning electron microscopy(SEM)and spherical-aberration corrected scanning transmission electron microscope(Cs-STEM).The PGE contents were analyzed by SEM‒EDS for submicron-scale PGM and alloys.The results show that olivine in lherzolite mainly hosts PGM of PtTe and PdBi2,whereas pyroxene contains small amounts of PdBiTe.Pyrrhotite predominantly hosts(Ir-Rh-Pt)AsS,Pd(BiTe),and other PGM,as well as PtSn and PtOs alloys.Pentlandite mainly encloses Pd(BiTe),PdBi/PdBi2 and other PGM,as well as PtSn and PtFe alloys.Chalcopyrite primarily encloses PdBi/PdBi2,and other PGM,along with PtSn and IrOs.Distinct distribution patterns of PGE in PGM and alloys had been observed between different orebodies.Orebody-24 contains more(Ir-Rh-Pt)AsS minerals and PtFe/PtSn alloy grains,whereas orebody-2 has a higher proportion of Pt-and Pd-bearing PGM.The presence of euhedral alloys in silicate minerals from orebody-24 suggests that its parent magma had a higher PGE content before sulfide saturation than that of orebody-2.More than 90%of PGM and alloys in both orebody-24 and orebody-2 contain Pt and Pd,emphasizing their contributions to the elevated Pt and Pd concentrations.The different PGE distributions of PGM and alloys in the two orebodies suggest that thermodynamic conditions(fO2 and fS2)and semimetals,especially As,play critical roles in controlling PGE behavior and occurrence. 展开更多
关键词 enrichment mechanism OCCURRENCE PGE Jinchuan Ni-Cu-PGE sulfide deposit
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部