A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)...A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization.展开更多
The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transitio...The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts.展开更多
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we...It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.展开更多
CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesi...CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries.展开更多
High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instab...High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs.展开更多
The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,whi...The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature.In this regard,photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method.The recently developed copper-and zinc-based multinary metal sulfide(MMS)semiconductor photocatalysts exhibit the advantages of suitable bandgap,wide light-harvesting range,and flexible elemental composition,thus possessing great potential for achieving considerable photocatalytic hydrogen evolution(PHE)performance.Despite great progress has been achieved,the current photocatalysts still cannot meet the commercial application demands,which highlights the mechanisms understanding and optimization strategies for efficient PHE.Herein,the basic mechanisms of PHE,and effective optimization strategies are firstly introduced.Afterwards,the research process and the performance of copper-and zinc-based MMS photocatalysts,are thoroughly reviewed.Finally,the unresolved issues,and challenges hindering the achievement of overall water splitting have been discussed.展开更多
Two-dimensional(2D)CuS/Cu_(9)S_(5)nanostructures are quite popular owing to their intriguing electrochemical properties.In-situ hydrothermal deposition of 2D CuS/Cu_(9)S_(5)nanostructures on nickel foam at different p...Two-dimensional(2D)CuS/Cu_(9)S_(5)nanostructures are quite popular owing to their intriguing electrochemical properties.In-situ hydrothermal deposition of 2D CuS/Cu_(9)S_(5)nanostructures on nickel foam at different pH was studied.The X-ray diffraction analysis confirmed two different stoichiometric forms,namely CuS and Cu_(9)S_(5),in different proportions with a change in the synthesis pH.Morphological and compositional analysis exhibited a strong impact of pH on the CuS/Cu_(9)S_(5)deposits.The samples prepared at pH 6.5 presented less agglomerated and densely distributed 2D nanosheets.Transmission electron microscopic studies under high resolution for the deposits synthesized at pH 6.5 showed hexagonal CuS and rhombohedral Cu_(9)S_(5)particles of 32 nm average particle size.The electrochemical characterization of the samples for energy storage devices by cyclic voltammetry(CV)study revealed the specific capacitance from 1781 Fg^(-1)to 1589 Fg^(-1)at 10 mVs1.The findings of CV and galvanostatic charge/discharge(GCD)analysis matched well.Rate capability studies showed the values between 72.9%and 50.24%at 7.5 Ag^(-1)for various samples.The sample prepared at pH 6.5 exhibited 73.07%of its starting capacitance at 10 Ag^(-1)after 2500 charging and discharging sequences.Electrochemical impedance spectroscopy runs(EIS)showed the existence of two constant phase elements(CPE)in series and the relaxation time constants from 0.01 to 0.5 seconds,which are preferred for energy storing purposes.Symmetric supercapacitor device prepared from sample deposited at pH 6.5 displayed 29.16 Wh energy per kg of material and a power density of 900 W kg^(-1),highlighting its suitability for high-efficiency energy storage applications.展开更多
Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigat...Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigate bioleaching behaviors and bacterial community succession.Results showed that copper recovery,bacterial concentration,total proportion of main leaching bacteria including Acidithiobacillus ferrooxidans,Acidibacillus ferrooxidans,and Leptospirillum ferriphilum,were improved through using appropriate dosage of fly ash.The maximum copper recovery of 79.87%and bacterial concentration of 7.08×10^(7)cells·mL^(-1)were obtained after us-ing 0.8 g·L^(-1)fly ash.Exclusive precipitation including Zn(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)and Mg(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)was found in sample added 0.8 g·L^(-1)fly ash,which reduced the effect of hazardous ions on bacteria and thus contributing to bacterial proliferation.Bacterial com-munity structure was differentiated,which indicated difference between original inoculation and sample used 0.8 g·L^(-1)fly ash was less than others.Total proportion of the three microorganism above accounted for more than 95%in all tests,especially in sample with 0.8 g·L^(-1)fly ash up to 99.81%.Cl^(-)and Ag^(+)contained in fly ash can act as catalytic agent,which contributed to conversion from smooth and dense passivation layer to sparse and scattered one,and therefore improving contact between ores,lixiviant,and bacteria.Using appropri-ate dosage of fly ash showed prospects in bioleaching.展开更多
The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing area...The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field.展开更多
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics....In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials.展开更多
Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the elect...Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Compared with the traditional pyrometallurgical process, copper bioleaching has distinctive advantages of high efficiency and lower cost, enabling efficiently extracts of valuable metal resources from copper sulfides....Compared with the traditional pyrometallurgical process, copper bioleaching has distinctive advantages of high efficiency and lower cost, enabling efficiently extracts of valuable metal resources from copper sulfides. Moreover, during long-term industrial applications of bioleaching, many regulatory enhancements and technological methods are used to accelerate the interfacial reactions. With advances in microbial genetic and sequencing technologies, bacterial communities and their mechanisms in bioleaching systems have been revealed gradually. The bacterial proliferation and dissolution of sulfide ores by a bacterial community depends on the pH, temperature, oxygen, reaction product regulation, additives, and passivation substances, among other factors. The internal relationship among the influencing factors and the succession of microorganism diversity are discussed and reviewed in this paper. This paper is intended to provide a good reference for studies related to enhanced bioleaching.展开更多
In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current de...In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.展开更多
Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the en...Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the enhancement of TE performance in CuzS should be achieved through improving its electrical transport properties. To achieve this goal, lithium element was doped into CuzS in this study. A series of Cu2_xLixS samples with different Li contents (x = 0, 0.005, 0.010, 0.050, and 0.100) was synthesized by the melting-annealing method. When x 〈 0.05, the Cuz_xLixS samples are stable and pure phases, having the same monoclinic structure with the pristine Cu2S at room temperature. The electrical conductivities in the Cu2_xLixS samples are greatly improved with the Li-doping content increasing due to the enhanced carrier concentrations. Meanwhile, doping Li into CuzS increases the ionic activation energy and lessens the influence of mobile Cu ions on the heat-carrying phonons. Thus, the thermal conductivities of the Li-doped Cu2S samples increase. A maximal figure of merit (zT) of 0.84 at 900 K is obtained in Cul.99Lio.018, about 133% improvement as compared with that in Cu2S matrix.展开更多
A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and s...A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.展开更多
This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid produ...This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.展开更多
The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and h...The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.展开更多
Owing to their high performance and earth abundance,copper sulfides(Cu_(2-x)S)have attracted wide attention as a promising medium-temperature thermoelectric material.Nanostructure and grain-boundary engineering are ex...Owing to their high performance and earth abundance,copper sulfides(Cu_(2-x)S)have attracted wide attention as a promising medium-temperature thermoelectric material.Nanostructure and grain-boundary engineering are explored to tune the electrical transport and phonon scattering of Cu_(2-x)S based on the liquid-like copper ion.Here multiscale architecture-engineered Cu_(2-x)S are fabricated by a room-temperature wet chemical synthesis combining mechanical mixing and spark plasma sintering.The observed electrical conductivity in the multiscale architecture-engineered Cu_(2-x)S is four times as much as that of the Cu_(2-x)S sample at 800 K,which is attributed to the potential energy filtering effect at the new grain boundaries.Moreover,the multiscale architecture in the sintered Cu_(2-x)S increases phonon scattering and results in a reduced lattice thermal conductivity of 0.2 W·m^(-1)·K^(-1) and figure of merit(zT)of 1.0 at 800 K.Such a zT value is one of the record values in copper sulfide produced by chemical synthesis.These results suggest that the introduction of nanostructure and formation of new interface are effective strategies for the enhancement of thermoelectric material properties.展开更多
The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactor...The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactors at 70℃.Introducing M.sedula copA mutant,a copper sensitive derivative,only had negligible effects on bioleaching.While introducing M.sedula ARS50-2,a Cu^2+resistant strain,substantially consolidated bioleaching process,with 27.77%more copper recovered after 58 d of bioleaching.Addition of M.sedula ARS50-2 likely enhanced the sulfur oxidation capacity of consortium after the 24th day under the Cu^2+stress.The majority of extreme thermoacidophiles were attached on minerals surface as indicated by quantitative PCR(qPCR)data.Successions of microbial community of extremely thermoacidophilic consortia that attached on surface of minerals were different from those in leachate.M.hakonensis HO1-1 was the dominant species attached on minerals surface in each column reactor throughout bioleaching process.The sessile M.sedula ARS50-2 remained as a major species till the 34th day.A.brierleyi DSM1651 was the most abundant planktonic species in leachate of each column reactor.These results highlight that higher Cu^2+-resistance is a beneficial trait for extreme thermoacidophiles to process copper minerals.展开更多
基金financially supported by the National Key Research and Development Program of China (No. 2022YFC2105300)。
文摘A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization.
基金supported by the Science and Technology Project of Southwest Petroleum University(No.2021JBGS03)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021ZYD0060)+2 种基金the National Natural Science Foundation of China(Nos.22209143 and 52371241)Guangdong High-level Innovation Institute Project(Nos.2021B0909050001 and 2021CX02L365)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120095).
文摘The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts.
基金financially supported by the National Natural Science Foundation of China(No.52374259)the Open Fund of the State Key Laboratory of Mineral Processing Science and Technology,China(No.BGRIMM-KJSKL-2023-11)the Major Science and Technology Projects in Yunnan Province,China(No.202302 AF080004)。
文摘It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.
基金National Natural Science Foundation of China(52171101)Fundamental Research Funds for the Central Universities(2024IAIS-QN009)National Key R&D Program of China(2021YFB3701100)。
文摘CuS-C50,the cathode materials for magnesium ion batteries,was synthesized by adding the surfactant cetyltrimethyl ammonium bromide(CTAB)and adjusting the percentage of ethylene glycol to 50vol%in hydrothermal synthesis process.Results show that CuS-C50 has the complete nanoflower structure.In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran(APC/THF)electrolyte,the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g.Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg^(2+)movement,eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries.
基金supported by the National Key R&D Program of China(2021YFB3800300).
文摘High-nickel cathode,LiNi0.8Co0.1Mn0.1O_(2)(NCM811),and sulfide-solid electrolyte are a promising combination for all-solid-state lithium batteries(ASSLBs).However,this combination faces the issue of interfacial instability between the cathode and electrolyte.Given the surface alkalinity of NCM811,we propose a strategy to construct a solid-polymer-electrolyte(SPE)interphase on NCM811 surface by leveraging the surface alkaline residues to nucleophilically initiate the in-situ ring-opening polymerization of cyclic organic molecules.As a proof-of-concept,this study demonstrates that the ring-opening copolymerization of 1,3-dioxolane and maleic anhydride produces a homogeneous,compact,and conformal SPE layer on NCM811 surface to prevent the cathode from contact and reaction with Li6PS5Cl solid-state electrolyte.Consequently,the SPE-modified-NCM811 in ASSLBs exhibits high capacities of 193.5 mA h g^(-1) at 0.2 C,160.9 mA h g^(-1) at 2.0 C and 112.3 mA h g^(-1) at 10 C,and particularly,excellent long-term cycling stabilities over 11000 cycles with a 71.95%capacity retention at 10 C at 25℃,as well as a remained capacity of 117.9 mA h g^(-1) after 8000 cycles at 30 C at 60℃,showing a great application prospect.This study provides a new route for creating electrochemically and structurally stable solid-solid interfaces for ASSLBs.
文摘The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen,which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature.In this regard,photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method.The recently developed copper-and zinc-based multinary metal sulfide(MMS)semiconductor photocatalysts exhibit the advantages of suitable bandgap,wide light-harvesting range,and flexible elemental composition,thus possessing great potential for achieving considerable photocatalytic hydrogen evolution(PHE)performance.Despite great progress has been achieved,the current photocatalysts still cannot meet the commercial application demands,which highlights the mechanisms understanding and optimization strategies for efficient PHE.Herein,the basic mechanisms of PHE,and effective optimization strategies are firstly introduced.Afterwards,the research process and the performance of copper-and zinc-based MMS photocatalysts,are thoroughly reviewed.Finally,the unresolved issues,and challenges hindering the achievement of overall water splitting have been discussed.
文摘Two-dimensional(2D)CuS/Cu_(9)S_(5)nanostructures are quite popular owing to their intriguing electrochemical properties.In-situ hydrothermal deposition of 2D CuS/Cu_(9)S_(5)nanostructures on nickel foam at different pH was studied.The X-ray diffraction analysis confirmed two different stoichiometric forms,namely CuS and Cu_(9)S_(5),in different proportions with a change in the synthesis pH.Morphological and compositional analysis exhibited a strong impact of pH on the CuS/Cu_(9)S_(5)deposits.The samples prepared at pH 6.5 presented less agglomerated and densely distributed 2D nanosheets.Transmission electron microscopic studies under high resolution for the deposits synthesized at pH 6.5 showed hexagonal CuS and rhombohedral Cu_(9)S_(5)particles of 32 nm average particle size.The electrochemical characterization of the samples for energy storage devices by cyclic voltammetry(CV)study revealed the specific capacitance from 1781 Fg^(-1)to 1589 Fg^(-1)at 10 mVs1.The findings of CV and galvanostatic charge/discharge(GCD)analysis matched well.Rate capability studies showed the values between 72.9%and 50.24%at 7.5 Ag^(-1)for various samples.The sample prepared at pH 6.5 exhibited 73.07%of its starting capacitance at 10 Ag^(-1)after 2500 charging and discharging sequences.Electrochemical impedance spectroscopy runs(EIS)showed the existence of two constant phase elements(CPE)in series and the relaxation time constants from 0.01 to 0.5 seconds,which are preferred for energy storing purposes.Symmetric supercapacitor device prepared from sample deposited at pH 6.5 displayed 29.16 Wh energy per kg of material and a power density of 900 W kg^(-1),highlighting its suitability for high-efficiency energy storage applications.
基金supported by China National Postdoctoral Program for Innovative Talents(No.BX20230041)China Postdoctoral Science Foundation(No.2024M750186)+1 种基金the Key Program of National Natural Science Foundation of China(No.52034001)Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control(No.HB202303).
文摘Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigate bioleaching behaviors and bacterial community succession.Results showed that copper recovery,bacterial concentration,total proportion of main leaching bacteria including Acidithiobacillus ferrooxidans,Acidibacillus ferrooxidans,and Leptospirillum ferriphilum,were improved through using appropriate dosage of fly ash.The maximum copper recovery of 79.87%and bacterial concentration of 7.08×10^(7)cells·mL^(-1)were obtained after us-ing 0.8 g·L^(-1)fly ash.Exclusive precipitation including Zn(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)and Mg(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)was found in sample added 0.8 g·L^(-1)fly ash,which reduced the effect of hazardous ions on bacteria and thus contributing to bacterial proliferation.Bacterial com-munity structure was differentiated,which indicated difference between original inoculation and sample used 0.8 g·L^(-1)fly ash was less than others.Total proportion of the three microorganism above accounted for more than 95%in all tests,especially in sample with 0.8 g·L^(-1)fly ash up to 99.81%.Cl^(-)and Ag^(+)contained in fly ash can act as catalytic agent,which contributed to conversion from smooth and dense passivation layer to sparse and scattered one,and therefore improving contact between ores,lixiviant,and bacteria.Using appropri-ate dosage of fly ash showed prospects in bioleaching.
基金X.H.acknowledges the financial support by Australian Research Council(ARC)Future Fellowship(FT190100756)M.P.S.gratefully acknowledges the support by the ARC under Discovery Early Career Researcher Award(DECRA)(DE210101565)and Discovery Project(DP230101676).
文摘The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field.
文摘In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials.
基金Project(51104183)supported by the National Natural Science Foundation of ChinaProject supported by the China Scholarship Council
文摘Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFC0600704)the National Science Fund for Excellent Young Scholars of China (No. 51722401)the Key Program of National Natural Science Foundation of China (No. 51734001)
文摘Compared with the traditional pyrometallurgical process, copper bioleaching has distinctive advantages of high efficiency and lower cost, enabling efficiently extracts of valuable metal resources from copper sulfides. Moreover, during long-term industrial applications of bioleaching, many regulatory enhancements and technological methods are used to accelerate the interfacial reactions. With advances in microbial genetic and sequencing technologies, bacterial communities and their mechanisms in bioleaching systems have been revealed gradually. The bacterial proliferation and dissolution of sulfide ores by a bacterial community depends on the pH, temperature, oxygen, reaction product regulation, additives, and passivation substances, among other factors. The internal relationship among the influencing factors and the succession of microorganism diversity are discussed and reviewed in this paper. This paper is intended to provide a good reference for studies related to enhanced bioleaching.
文摘In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.
基金financially supported by the National Natural Science Foundation of China (Nos. 51472262 and 51625205)the Key Research Program of Chinese Academy of Sciences (No.KFZD-SW-421)the Shanghai Government (No. 15JC1400301)
文摘Copper sulfide Cu2S is a p-type semiconducting compound that has attracted great attentions in the thermoelectric (TE) community most recently. Considering the intrinsic ultralow lattice thermal conductivity, the enhancement of TE performance in CuzS should be achieved through improving its electrical transport properties. To achieve this goal, lithium element was doped into CuzS in this study. A series of Cu2_xLixS samples with different Li contents (x = 0, 0.005, 0.010, 0.050, and 0.100) was synthesized by the melting-annealing method. When x 〈 0.05, the Cuz_xLixS samples are stable and pure phases, having the same monoclinic structure with the pristine Cu2S at room temperature. The electrical conductivities in the Cu2_xLixS samples are greatly improved with the Li-doping content increasing due to the enhanced carrier concentrations. Meanwhile, doping Li into CuzS increases the ionic activation energy and lessens the influence of mobile Cu ions on the heat-carrying phonons. Thus, the thermal conductivities of the Li-doped Cu2S samples increase. A maximal figure of merit (zT) of 0.84 at 900 K is obtained in Cul.99Lio.018, about 133% improvement as compared with that in Cu2S matrix.
基金financial supports from the National Natural Science Foundation of China (51634010,51904354)the National Science Fund for Distinguished Young Scholars of China (51825403)+1 种基金the National Key R&D Program of China (2018YFC1900306,2019YFC1907405)Key Research and Development Program of Hunan Province,China (2019SK2291)。
文摘A new hydrometallurgical route for separation and recovery of Cu from Cu-As-bearing copper electrorefining black slime was developed. The proposed process comprised oxidation acid leaching of Cu-As-bearing slime and selective sulfide precipitation of Cu from the leachate. The effects of various process parameters on the leaching and precipitation of Cu and As were investigated. At the first stage, Cu extraction of 95.2% and As extraction of 97.6% were obtained at 80 ℃ after 4 h with initial H2 SO4 concentration of 1.0 mol/L and liquid-to-solid ratio of 10 mL/g. In addition, the leaching kinetics of Cu and As was successfully reproduced by the Avrami model, and the apparent activation energies were found to be 33.6 and 35.1 kJ/mol for the Cu and As leaching reaction, respectively, suggesting a combination of chemical reaction and diffusion control. During the selective sulfide precipitation, about 99.4% Cu was recovered as CuS, while only 0.1% As was precipitated under the optimal conditions using sulfide-to-copper ratio of 2.4:1, time of 1.5 h and temperature of 25 ℃.
文摘This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.
基金Project(2012AA061501)supported by the National High-tech Research and Development Program of ChinaProject(20120162120010)supported by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金Project(NCET-13-0595)supported by the program for New Century Excellent Talents in University of ChinaProject(51374248)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Key Basic Research Program of China
文摘The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.
基金financially supported by the National Natural Science Foundation of China(Nos.51702091 and 51702046)the College Outstanding Young Scientific and Technological Innovation Team of Hubei province(No.T201922)+2 种基金the Special Funding of Preventing the Spread of COVID-19,Hubei University of Education(No.20XGZX20)Fok Ying-Tong Education Foundation of China(No.171041)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Owing to their high performance and earth abundance,copper sulfides(Cu_(2-x)S)have attracted wide attention as a promising medium-temperature thermoelectric material.Nanostructure and grain-boundary engineering are explored to tune the electrical transport and phonon scattering of Cu_(2-x)S based on the liquid-like copper ion.Here multiscale architecture-engineered Cu_(2-x)S are fabricated by a room-temperature wet chemical synthesis combining mechanical mixing and spark plasma sintering.The observed electrical conductivity in the multiscale architecture-engineered Cu_(2-x)S is four times as much as that of the Cu_(2-x)S sample at 800 K,which is attributed to the potential energy filtering effect at the new grain boundaries.Moreover,the multiscale architecture in the sintered Cu_(2-x)S increases phonon scattering and results in a reduced lattice thermal conductivity of 0.2 W·m^(-1)·K^(-1) and figure of merit(zT)of 1.0 at 800 K.Such a zT value is one of the record values in copper sulfide produced by chemical synthesis.These results suggest that the introduction of nanostructure and formation of new interface are effective strategies for the enhancement of thermoelectric material properties.
基金Project(207154)supported by the Postdoctoral Research Funding of Central South University,ChinaProjects(31470230,51320105006,51604308)supported by the National Natural Science Foundation of China+2 种基金Project(2017RS3003)supported by the Youth Talent Foundation of Hunan Province,ChinaProject(2018JJ2486)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018WK2012)supported by the Key Research and Development Projects in Hunan Province,China。
文摘The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactors at 70℃.Introducing M.sedula copA mutant,a copper sensitive derivative,only had negligible effects on bioleaching.While introducing M.sedula ARS50-2,a Cu^2+resistant strain,substantially consolidated bioleaching process,with 27.77%more copper recovered after 58 d of bioleaching.Addition of M.sedula ARS50-2 likely enhanced the sulfur oxidation capacity of consortium after the 24th day under the Cu^2+stress.The majority of extreme thermoacidophiles were attached on minerals surface as indicated by quantitative PCR(qPCR)data.Successions of microbial community of extremely thermoacidophilic consortia that attached on surface of minerals were different from those in leachate.M.hakonensis HO1-1 was the dominant species attached on minerals surface in each column reactor throughout bioleaching process.The sessile M.sedula ARS50-2 remained as a major species till the 34th day.A.brierleyi DSM1651 was the most abundant planktonic species in leachate of each column reactor.These results highlight that higher Cu^2+-resistance is a beneficial trait for extreme thermoacidophiles to process copper minerals.