The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocat...The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocatalytic CO_(2)reduction reactions behaviors are rarely concerned.Herein,a slightly amount of Cd^(2+)is decorated on the surface of(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material(Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4))to tune the surface d-band states for improved CO_(2)+2reduction reactions.The Cd/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)is fabricated via the facile ions-exchange method to make that slightly Zn2+is substituted by Cd^(2+).The Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)exhibits much enhanced photocatalytic activity in CO_(2)reduction reactions to produce CO and water splitting to produce H_(2).Physical characterizations show that the energy band structure is not changed obviously.Density functional theory reveals that Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)possesses a closer shift of d-band center to Fermi level than(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4),suggesting easier adsorption of CO_(2)reduction reactive intermediates after Cd^(2+)decoration.Further calculations confirm that a relatively reduced adsorption Gibbs energy of reactive intermediates in CO_(2)reduction reaction is required on Zn atoms in Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material,benefiting the photocatalytic CO_(2)reduction reactions.This work engineers surface d-band states by surface Cd^(2+)decoration,which gives an effective strategy to design highly efficient photocatalysts for syngas production.展开更多
Thin films of SnSx,semiconductors,have been successfully synthesized by ultrasonic spray pyrolysis technique,using two precursors namely:tin(II)chloride and tin(IV)chloride,respectively.The solutions were prepare...Thin films of SnSx,semiconductors,have been successfully synthesized by ultrasonic spray pyrolysis technique,using two precursors namely:tin(II)chloride and tin(IV)chloride,respectively.The solutions were prepared by the dilution of different Sn molarities of the two precursors separately.The precursor molarities were varied from 0.04 to 0.07 mol/L,whereas that of S was fixed at 0.1 mol/L.The present work focuses on the effect of the different precursor’s molarities on the nature and the properties of the prepared thin films in order to optimize the growth conditions.X-ray diffraction analysis reveals that the precursor’s molarities alter the grain size of the prepared films,which varied from 8 to 14 nm and from 12 to 16 nm,according to the used precursor.The films analysis by SEM,shows that the SnS2 films are more dense and smooth than the SnS films.The composition of the elements is analysed with an EDX spectrometer,and the obtained result for M(sn)=0:07 mol/L indicates that the atomic ratio of Sn to S is 51.57:48:43 and 36:64 for films synthesized from the first and second precursors respectively.Electrical measurements show that the conductivity behavior depends on the used precursors and their molarities.展开更多
基金the financial support from the National Natural Science Foundation of China(22072183)the Natural Science Foundation of Hunan Province,China(2022JJ30690)supported in part by the High Performance Computing Center of Central South University。
文摘The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocatalytic CO_(2)reduction reactions behaviors are rarely concerned.Herein,a slightly amount of Cd^(2+)is decorated on the surface of(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material(Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4))to tune the surface d-band states for improved CO_(2)+2reduction reactions.The Cd/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)is fabricated via the facile ions-exchange method to make that slightly Zn2+is substituted by Cd^(2+).The Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)exhibits much enhanced photocatalytic activity in CO_(2)reduction reactions to produce CO and water splitting to produce H_(2).Physical characterizations show that the energy band structure is not changed obviously.Density functional theory reveals that Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)possesses a closer shift of d-band center to Fermi level than(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4),suggesting easier adsorption of CO_(2)reduction reactive intermediates after Cd^(2+)decoration.Further calculations confirm that a relatively reduced adsorption Gibbs energy of reactive intermediates in CO_(2)reduction reaction is required on Zn atoms in Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material,benefiting the photocatalytic CO_(2)reduction reactions.This work engineers surface d-band states by surface Cd^(2+)decoration,which gives an effective strategy to design highly efficient photocatalysts for syngas production.
文摘Thin films of SnSx,semiconductors,have been successfully synthesized by ultrasonic spray pyrolysis technique,using two precursors namely:tin(II)chloride and tin(IV)chloride,respectively.The solutions were prepared by the dilution of different Sn molarities of the two precursors separately.The precursor molarities were varied from 0.04 to 0.07 mol/L,whereas that of S was fixed at 0.1 mol/L.The present work focuses on the effect of the different precursor’s molarities on the nature and the properties of the prepared thin films in order to optimize the growth conditions.X-ray diffraction analysis reveals that the precursor’s molarities alter the grain size of the prepared films,which varied from 8 to 14 nm and from 12 to 16 nm,according to the used precursor.The films analysis by SEM,shows that the SnS2 films are more dense and smooth than the SnS films.The composition of the elements is analysed with an EDX spectrometer,and the obtained result for M(sn)=0:07 mol/L indicates that the atomic ratio of Sn to S is 51.57:48:43 and 36:64 for films synthesized from the first and second precursors respectively.Electrical measurements show that the conductivity behavior depends on the used precursors and their molarities.