期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
INFLUENCE OF Y,Ce AND La ON HIGH TEMPERATURE SULFIDATION OF Fe-25Cr-40Ni SUPERALLOY
1
作者 HUANG Yuanwei HAN Yong SUN Lanxiang XU Zhiqiang SHI Shengtai(S.T.Shih) Shanghai Institute of Metallurgy,Academia Sinica,Shanghai,China HUANG Yuanwei,Associate Professor,Shanghai Institute of Metallurgy,Academia Sinica,865 Changning Road,Shanghai,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第7期10-14,共5页
The effects of Y,Ce and La on the sulfidation of alloy Fe-25Cr-40Ni have been investigated. The sulfidation rate of the alloys with RE more than 0.1 wt-% is lower than that of the base alloy.The addition of Y is more ... The effects of Y,Ce and La on the sulfidation of alloy Fe-25Cr-40Ni have been investigated. The sulfidation rate of the alloys with RE more than 0.1 wt-% is lower than that of the base alloy.The addition of Y is more effective than La and Ce in lowering the sulfidation rate. Based on the analyses of the structure and composition of the sulfide seales,the sulfidation mechanism of the alloys with RE has been proposed. 展开更多
关键词 sulfidation RARE-EARTH sulfide scale sulfidation rate
在线阅读 下载PDF
Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels 被引量:16
2
作者 Meng-long Li Fu-ming Wang +3 位作者 Chang-rong Li Zhan-bing Yang Qing-yong Meng and Su-fen Tao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期589-597,共9页
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t... The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels. 展开更多
关键词 medium carbon steels cooling rate aluminum content manganese sulfide formation mechanisms
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部