The design guideline for the air suction drawing system with auxiliary air was analyzed,a spunbonding nonwoven system named PADHL1-3200 was designed and polypropylene(PP) spunbonded nonwoven fabrics with excellent pro...The design guideline for the air suction drawing system with auxiliary air was analyzed,a spunbonding nonwoven system named PADHL1-3200 was designed and polypropylene(PP) spunbonded nonwoven fabrics with excellent properties were achieved after many trial runs.On the other hand,the suction air velocity(VA) was calculated and the influence of VA on the bonding strengh of PP nonwoven fabrics was studied as well.It was found that VA is 1.5-2.5 times of the spinning velocity.With the increase of VA,PP fibers become finer and the bonding strength of PP nonwoven fabrics increases as well.展开更多
A rhombic planform nonlinear cross-diffusive instability analysis is applied to a particular interaction-diffusion plant-ground water model system in an arid flat environment. This model contains a plant root suction ...A rhombic planform nonlinear cross-diffusive instability analysis is applied to a particular interaction-diffusion plant-ground water model system in an arid flat environment. This model contains a plant root suction effect as a cross-diffusion term in the ground water equation. In addition a threshold-dependent paradigm that differs from the usually employed implicit zero-threshold methodology is introduced to interpret stable rhombic patterns. These patterns are driven by root suction since the plant equation does not yield the required positive feedback necessary for the generation of standard Turing-type self-diffusive instabilities. The results of that analysis can be represented by plots in a root suction coefficient versus rainfall rate dimensionless parameter space. From those plots regions corresponding to bare ground and vegetative patterns consisting of isolated patches, rhombic arrays of pseudo spots or gaps separated by an intermediate rectangular state, and homogeneous distributions from low to high density may be identified in this parameter space. Then, a morphological sequence of stable vegetative states is produced upon traversing an experimentally-determined root suction characteristic curve as a function of rainfall through these regions. Finally, that predicted sequence along a rainfall gradient is compared with observational evidence relevant to the occurrence of leopard bush, pearled bush, or labyrinthine tiger bush vegetative patterns, used to motivate an aridity classification scheme, and placed in the context of some recent biological nonlinear pattern formation studies.展开更多
Objective: To compare the clinical effects of uterine cavity observation and suction surgery system with ultrasound guided induced abortion in very early pregnancy induced abortion surgery. Method: Select 80 patients ...Objective: To compare the clinical effects of uterine cavity observation and suction surgery system with ultrasound guided induced abortion in very early pregnancy induced abortion surgery. Method: Select 80 patients who requested termination of pregnancy due to early pregnancy from August 2022 to April 2023, and analyze the data. 40 patients who underwent ultrasound-guided induced abortion to terminate pregnancy were included in the control group, and 40 patients who underwent uterine cavity observation surgery to terminate pregnancy were included in the observation group. Compare the surgical time, number of times the straw enters the uterine cavity, incidence of complications, and menstrual recovery time between the two groups. Results: There was no statistically significant difference in the surgical time between the observation group and the control group, but the number of times negative pressure straws entered the uterine cavity and the incidence of surgical complications in the observation group were significantly lower than those in the control group (P Conclusion: Applying the uterine cavity observation and suction surgical system to terminate pregnancy in very early pregnancy has the advantages of minimal damage to the uterus and low incidence of surgical complications, greatly protecting the patient’s fertility.展开更多
Objective To evaluate the effects and safety of closed tracheal suction system (CTSS) versus open tracheal suction system(OTSS) for mechanically ventilated patients. Methods All randomized controlled trials (RCTs) com...Objective To evaluate the effects and safety of closed tracheal suction system (CTSS) versus open tracheal suction system(OTSS) for mechanically ventilated patients. Methods All randomized controlled trials (RCTs) comparing CTSS with OTSS for mechanically ventilated patients home and展开更多
Objective:We aimed to study the effect of flexible ureteroscopy(FURS)for renal stones using a flexible and navigable suction ureteral access sheath(FANS)on intraoperative radiation dose and time.Methods:This was a mul...Objective:We aimed to study the effect of flexible ureteroscopy(FURS)for renal stones using a flexible and navigable suction ureteral access sheath(FANS)on intraoperative radiation dose and time.Methods:This was a multicenter study of adults who underwent FURS with FANS.The correlation analysis was done to identify factors affecting radiation dose and time measured by the C-arm fluoroscopy intraoperatively.Results:We analyzed 110 patients,with a median age of 50 years.Of them,72%were pre-stented prior to the procedure.The median stone volume was 1503 mm3 and the median operative time was 39 min.The median radiation dose was 7.4 mSv and median radiation time was 0.6 min.Totally,91%of patients achieved stone-free status(Grade A or B)on the non-contrast CT scan within 30 days postoperatively.There were no cases of postoperative sepsis.Body mass index,stone volume,and total operation time were associated with a higher radiation dose.Procedures performed under general anesthesia had a lower radiation dose and time than those performed under spinal anesthesia.Disposable scopes were associated with higher radiation time than reusable scopes but not dose.A low-power holmium laser had longer radiation time than other laser sources,but only the thulium fiber laser was associated with a significantly lower radiation dose.Conclusion:Our study is the first to highlight the multitude of factors affecting radiation exposure in FURS with FANS.Although not a direct measure of surgeons'actual exposure,it has important implications for the As Low As Reasonably Achievable principle which is commonly used to minimize radiation exposure to patients and operating room staff.展开更多
This study explores the bioconvective behavior of a Reiner-Rivlin nanofluid,accounting for spatially varying thermal properties.The flow is considered over a porous,stretching surface with mass suction effects incorpo...This study explores the bioconvective behavior of a Reiner-Rivlin nanofluid,accounting for spatially varying thermal properties.The flow is considered over a porous,stretching surface with mass suction effects incorporated into the transport analysis.The Reiner-Rivlin nanofluid model includes variable thermal conductivity,mass diffusivity,and motile microorganism density to accurately reflect realistic biological conditions.Radiative heat transfer and internal heat generation are considered in the thermal energy equation,while the Cattaneo-Christov theory is employed to model non-Fourier heat and mass fluxes.The governing equations are non-dimensionalized to reduce complexity,and a numerical solution is obtained using a shooting method.Parametric studies are conducted to examine the influence of key dimensionless parameters on velocity,temperature,concentration,and motile microorganism profiles.The results are presented through a series of graphs,offering insight into the dynamic interplay between physical mechanisms affecting heat and mass transfer in non-Newtonian bioconvective nanofluid systems.展开更多
The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,th...The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects.展开更多
Suction bucket jacket foundations exhibit considerable potential for implementation in deep-sea offshore wind power projects. To address water film formation resulting from negative pressure penetration during constru...Suction bucket jacket foundations exhibit considerable potential for implementation in deep-sea offshore wind power projects. To address water film formation resulting from negative pressure penetration during construction, certain suction bucket jacket foundation projects implement grouting techniques to ensure adequate bearing capacity. This study conducted a large-scale suction bucket foundation grouting model experiment to examine grout flow characteristics and specific phenomena under various grouting pipeline configurations. Comparative analyses of grouting efficiency and quality across different pipeline layouts identified critical influencing factors and their impact on grouting performance. The results demonstrate that the number of grout outlets should be maintained within an optimal range:insufficient outlets enhance the indentation effect and decrease fill efficiency, while excessive outlets necessitate precise spacing for effective distribution. Additionally, grout outlets should be uniformly arranged to reduce segregation and enhance overall grouting quality. This study's findings provide a scientific foundation for optimizing grouting design in suction bucket jacket foundations, with substantial implications for engineering applications.展开更多
Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs,heat exchang...Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs,heat exchangers,marine propulsion,and aerodynamics.The current study investigates the characteristics of heat transport in a reactive third-grade fluid,moving through permeable parallel plates,with uniform suction/injection velocity.The two permeable,parallel plates are maintained at the same,constant temperature.After being transformed into its dimensionless equivalent,governing equations are solved by employing the Least Squares Method(LSM).The LSM results are further validated with numerical solutions for temperature and velocity.The impact of cross-flow Reynolds number,Peclet number,heat generation parameter,non-Newtonian parameter,and Brinkman number on entropy generation,velocity,temperature,and Bejan number are investigated.Theresults indicate that temperature distribution is significantly influenced by the third-grade fluid parameter.The maximum temperature drops from almost 0.12 to 0.10 as the third-grade fluid parameter increases from0.05 to 0.4.When the cross-flow Reynolds number is raised from 0.05 to 3,the maximum temperature drops from 0.12 to around 0.09.Temperature is strongly influenced by the heat generation parameter.A greater understanding of the thermal characteristics necessary for the design of a variety of systems,such as heat exchangers,marine propulsion,aerodynamic systems,etc.,may be gained from the findings of the current study.展开更多
Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil wate...Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.展开更多
This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the casca...This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of rnidspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does.展开更多
Global pressure distribution on the suction surface of a single vane in a transonic cascade wind tunnel is measured with the help of intensity-based pressure-sensitive paint (PSP) technique using a type of temperature...Global pressure distribution on the suction surface of a single vane in a transonic cascade wind tunnel is measured with the help of intensity-based pressure-sensitive paint (PSP) technique using a type of temperature-insensitive fluorescent paint and a self-made measurement system. This measurement is conducted at the outlet of the cascade wind tunnel at the Mach numbers 0.3 and 0.4, attack angle about –20°, ambient pressure 95.4 kPa and temperature 15 °C. The vane under study owns a large camber angle of ...展开更多
In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex ge...In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall.展开更多
Root tensile strength is an important factor controlling the performance of bio-slope stabilization works. Due to evapotranspiration and climate factors, the root moisture content and its suction can vary seasonally i...Root tensile strength is an important factor controlling the performance of bio-slope stabilization works. Due to evapotranspiration and climate factors, the root moisture content and its suction can vary seasonally in practice and may not equal soil suction. The influences of suction and root moisture contents were investigated on Chrysopogon zizanioides(vetiver grass) root tensile strength. The root specimens were equilibrated with moist air in different suction conditions(0, 10, 20, and 50 kPa), prior to root tension tests. The root-water characteristic curve or relationship between root moisture and suction, was determined. The increase in suction resulted in decreased tensile strengths of the grass roots, particularly those with diameter of about 0.2 mm, which constituted 50.7% of all roots. For 1 mm roots, the tensile strength appeared to be unaffected by suction increase. The average root tensile strengths were used to estimate the root cohesion in slope stability analysis to find variation of safety factors of a bioengineered slope in different suction conditions. The analysis showed that the critical condition of slope with the lowest factor of safety would happen when the soil suction was zero and the root suction was high. Such condition may occur during a heavy rain period after a prolonged drought.展开更多
Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was develop...Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was developed with Z_SOIL software. The numerical model was calibrated against experimental results. Soil deformation and earth pressures on skirted caissons were investigated by using the finite element model to extend the model tests. It shows that the "skirted" structure can significantly increase the lateral capacity and limit the deflection, especially suitable for offshore wind turbines, compared with regular suction caissons without the "skirted" at the same load level. In addition, appropriate determination of rotation centers plays a crucial role in calculating the lateral capacity by using the analytical method. It was also found that the rotation center is related to dimensions of skirted suction caissons and loading process, i.e. the rotation center moves upwards with the increase of the "skirted" width and length; moreover, the rotation center moves downwards with the increase of loading and keeps constant when all the sand along the caisson's wall yields. It is so complex that we cannot simply determine its position like the regular suction caisson commonly with a specified position to the length ratio of the caisson.展开更多
Based on the investigation of mid-span local boundary layer suction and positive bowed cascade, a coupled local tailored boundary layer suction and positive bowed blade method is developed to improve the performance o...Based on the investigation of mid-span local boundary layer suction and positive bowed cascade, a coupled local tailored boundary layer suction and positive bowed blade method is developed to improve the performance of a highly loaded diffusion cascade with less suction slot. The effectiveness of the coupled method under different inlet boundary layers is also investigated.Results show that mid-span local boundary layer suction can effectively remove trailing edge separation, but deteriorate the flow fields near the endwall. The positive bowed cascade is beneficial for reducing open corner separation, but is detrimental to mid-span flow fields. The coupled method can further improve the performance and flow field of the cascade. The mid-span trailing edge separation and open corner separation are eliminated. Compared with linear cascade with suction, the coupled method reduces overall loss of the cascade by 31.4% at most. The mid-span loss of the cascade decreases as the suction coefficient increases, but increases as bow angle increases. The endwall loss increases as the suction coefficient increases. By contrast, the endwall loss decreases significantly as the bow angle increases. The endwall loss of coupled controlled cascade is higher than that of bowed cascade with the same bow angle because of the spanwise inverse ‘‘C" shaped static pressure distribution. Under different inlet boundary layer conditions, the coupled method can also improve the cascade effectively.展开更多
A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-wate...A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-water characteristic curves, 1D free swelling tests, measurement of swelling pressure and shrinkage tests. The test results revealed that the air-entry value of the natural specimen was quite low due to cracks and fissures present. The hydraulic hysteresis of the natural specimen was relatively insignificant as compared with the compacted specimen. Within a suction range 0 to 500 kPa, a bilinear relationship between free swelling strain (or swelling pressure) and initial soil suction was observed for both the natural and compacted specimens. As a result of over-consolidation and secondary structures such as cementation and cracks, the natural specimens exhibited significant lower swelling (or swelling pressure) than the compacted specimen. The change of matric suction exerts a more significant effect on the water phase than on the soil skeleton for this expansive clay.展开更多
Investment and suction casting (ISC) represents an economic and promising process route to fabricate auto-motive exhaust valves of γ-TiAI based alloys, but information available on the metal flow and the temperatur...Investment and suction casting (ISC) represents an economic and promising process route to fabricate auto-motive exhaust valves of γ-TiAI based alloys, but information available on the metal flow and the temperature changeseduring mould filling and solidification process for the ISC process is meager. A sequentially coupled mathematical flow-thermal model, based on the commercial finite-volume/finite-difference code FLOW-3D and the finite-element code PROCAST, has been developed to investigate the ISC process. In term of calcu-lating the flow and temperature fields during the filling and solidification stages, potential defects including the gas bubbles and the surface air entrainment occurred in the mould filling process and the shrinkage porosities formed in the solidification process are predicted and the reasons for the formation of these defects are also analyzed. The effects of filling pressure difference control methods and moulds on gas bubble and surface air entrainment behavior are presented. It is found that by changing the filling pressure difference control methods from general suction casting to "air leakage" suction casting and reducing air leakage flow rates, the gas bubbles are eliminated effectively, and the surface air entrainment attenuate dramatically. With resort to a mould with a tetragonal runner, the surface air entrainment decrease to the lowest level. Finally, the water analogue and suction casting experiments of exhaust valves are implemented for further validation of the simulation results.展开更多
Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the ex...Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.展开更多
The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc meltin...The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc melting and copper mould suction casting. The structures of as-cast (Ti0.46Cr0.54)100-xVx (x = 2.5, 5.0, and 7.1) alloy ingots evolve with V contents from pure Laves-(x = 2.5) to dual-phase TiCr2-BCC structures (5.0 and 7.1), whereas the suction-cast (Ti0.46Cr0.54)100-xVx (x =2.5, 5.0, and 7.1) alloys only contain single BCC phase. The suction-cast alloy rod (Ti0.46Cr0.54)95V5, containing only 5.0 at% V is shown to possess the optimum hydrogen absorption capacity, with the maximum hydrogen content of 3.14 wt%. Furthermore, the hydrogen storage properties of the suction-cast low V alloys (TiyCr1-y)95V5 (y = 0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14 cluster [TiTCrs] have good hydrogen storage properties.展开更多
文摘The design guideline for the air suction drawing system with auxiliary air was analyzed,a spunbonding nonwoven system named PADHL1-3200 was designed and polypropylene(PP) spunbonded nonwoven fabrics with excellent properties were achieved after many trial runs.On the other hand,the suction air velocity(VA) was calculated and the influence of VA on the bonding strengh of PP nonwoven fabrics was studied as well.It was found that VA is 1.5-2.5 times of the spinning velocity.With the increase of VA,PP fibers become finer and the bonding strength of PP nonwoven fabrics increases as well.
文摘A rhombic planform nonlinear cross-diffusive instability analysis is applied to a particular interaction-diffusion plant-ground water model system in an arid flat environment. This model contains a plant root suction effect as a cross-diffusion term in the ground water equation. In addition a threshold-dependent paradigm that differs from the usually employed implicit zero-threshold methodology is introduced to interpret stable rhombic patterns. These patterns are driven by root suction since the plant equation does not yield the required positive feedback necessary for the generation of standard Turing-type self-diffusive instabilities. The results of that analysis can be represented by plots in a root suction coefficient versus rainfall rate dimensionless parameter space. From those plots regions corresponding to bare ground and vegetative patterns consisting of isolated patches, rhombic arrays of pseudo spots or gaps separated by an intermediate rectangular state, and homogeneous distributions from low to high density may be identified in this parameter space. Then, a morphological sequence of stable vegetative states is produced upon traversing an experimentally-determined root suction characteristic curve as a function of rainfall through these regions. Finally, that predicted sequence along a rainfall gradient is compared with observational evidence relevant to the occurrence of leopard bush, pearled bush, or labyrinthine tiger bush vegetative patterns, used to motivate an aridity classification scheme, and placed in the context of some recent biological nonlinear pattern formation studies.
文摘Objective: To compare the clinical effects of uterine cavity observation and suction surgery system with ultrasound guided induced abortion in very early pregnancy induced abortion surgery. Method: Select 80 patients who requested termination of pregnancy due to early pregnancy from August 2022 to April 2023, and analyze the data. 40 patients who underwent ultrasound-guided induced abortion to terminate pregnancy were included in the control group, and 40 patients who underwent uterine cavity observation surgery to terminate pregnancy were included in the observation group. Compare the surgical time, number of times the straw enters the uterine cavity, incidence of complications, and menstrual recovery time between the two groups. Results: There was no statistically significant difference in the surgical time between the observation group and the control group, but the number of times negative pressure straws entered the uterine cavity and the incidence of surgical complications in the observation group were significantly lower than those in the control group (P Conclusion: Applying the uterine cavity observation and suction surgical system to terminate pregnancy in very early pregnancy has the advantages of minimal damage to the uterus and low incidence of surgical complications, greatly protecting the patient’s fertility.
文摘Objective To evaluate the effects and safety of closed tracheal suction system (CTSS) versus open tracheal suction system(OTSS) for mechanically ventilated patients. Methods All randomized controlled trials (RCTs) comparing CTSS with OTSS for mechanically ventilated patients home and
文摘Objective:We aimed to study the effect of flexible ureteroscopy(FURS)for renal stones using a flexible and navigable suction ureteral access sheath(FANS)on intraoperative radiation dose and time.Methods:This was a multicenter study of adults who underwent FURS with FANS.The correlation analysis was done to identify factors affecting radiation dose and time measured by the C-arm fluoroscopy intraoperatively.Results:We analyzed 110 patients,with a median age of 50 years.Of them,72%were pre-stented prior to the procedure.The median stone volume was 1503 mm3 and the median operative time was 39 min.The median radiation dose was 7.4 mSv and median radiation time was 0.6 min.Totally,91%of patients achieved stone-free status(Grade A or B)on the non-contrast CT scan within 30 days postoperatively.There were no cases of postoperative sepsis.Body mass index,stone volume,and total operation time were associated with a higher radiation dose.Procedures performed under general anesthesia had a lower radiation dose and time than those performed under spinal anesthesia.Disposable scopes were associated with higher radiation time than reusable scopes but not dose.A low-power holmium laser had longer radiation time than other laser sources,but only the thulium fiber laser was associated with a significantly lower radiation dose.Conclusion:Our study is the first to highlight the multitude of factors affecting radiation exposure in FURS with FANS.Although not a direct measure of surgeons'actual exposure,it has important implications for the As Low As Reasonably Achievable principle which is commonly used to minimize radiation exposure to patients and operating room staff.
文摘This study explores the bioconvective behavior of a Reiner-Rivlin nanofluid,accounting for spatially varying thermal properties.The flow is considered over a porous,stretching surface with mass suction effects incorporated into the transport analysis.The Reiner-Rivlin nanofluid model includes variable thermal conductivity,mass diffusivity,and motile microorganism density to accurately reflect realistic biological conditions.Radiative heat transfer and internal heat generation are considered in the thermal energy equation,while the Cattaneo-Christov theory is employed to model non-Fourier heat and mass fluxes.The governing equations are non-dimensionalized to reduce complexity,and a numerical solution is obtained using a shooting method.Parametric studies are conducted to examine the influence of key dimensionless parameters on velocity,temperature,concentration,and motile microorganism profiles.The results are presented through a series of graphs,offering insight into the dynamic interplay between physical mechanisms affecting heat and mass transfer in non-Newtonian bioconvective nanofluid systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.52371301 and 52471289)。
文摘The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects.
文摘Suction bucket jacket foundations exhibit considerable potential for implementation in deep-sea offshore wind power projects. To address water film formation resulting from negative pressure penetration during construction, certain suction bucket jacket foundation projects implement grouting techniques to ensure adequate bearing capacity. This study conducted a large-scale suction bucket foundation grouting model experiment to examine grout flow characteristics and specific phenomena under various grouting pipeline configurations. Comparative analyses of grouting efficiency and quality across different pipeline layouts identified critical influencing factors and their impact on grouting performance. The results demonstrate that the number of grout outlets should be maintained within an optimal range:insufficient outlets enhance the indentation effect and decrease fill efficiency, while excessive outlets necessitate precise spacing for effective distribution. Additionally, grout outlets should be uniformly arranged to reduce segregation and enhance overall grouting quality. This study's findings provide a scientific foundation for optimizing grouting design in suction bucket jacket foundations, with substantial implications for engineering applications.
文摘Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs,heat exchangers,marine propulsion,and aerodynamics.The current study investigates the characteristics of heat transport in a reactive third-grade fluid,moving through permeable parallel plates,with uniform suction/injection velocity.The two permeable,parallel plates are maintained at the same,constant temperature.After being transformed into its dimensionless equivalent,governing equations are solved by employing the Least Squares Method(LSM).The LSM results are further validated with numerical solutions for temperature and velocity.The impact of cross-flow Reynolds number,Peclet number,heat generation parameter,non-Newtonian parameter,and Brinkman number on entropy generation,velocity,temperature,and Bejan number are investigated.Theresults indicate that temperature distribution is significantly influenced by the third-grade fluid parameter.The maximum temperature drops from almost 0.12 to 0.10 as the third-grade fluid parameter increases from0.05 to 0.4.When the cross-flow Reynolds number is raised from 0.05 to 3,the maximum temperature drops from 0.12 to around 0.09.Temperature is strongly influenced by the heat generation parameter.A greater understanding of the thermal characteristics necessary for the design of a variety of systems,such as heat exchangers,marine propulsion,aerodynamic systems,etc.,may be gained from the findings of the current study.
基金supported by the National Natural Science Foundation of China(Grant No.41825018)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090402)the National Natural Science Foundation of China(Grant No.42141009).
文摘Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.
基金National Basic Research Program of China (2007CB210100)National Natural Science Foundation of China (50876023)Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20060213007)
文摘This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of rnidspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does.
基金National Natural Science Foundation of China (50476071, 10577020)
文摘Global pressure distribution on the suction surface of a single vane in a transonic cascade wind tunnel is measured with the help of intensity-based pressure-sensitive paint (PSP) technique using a type of temperature-insensitive fluorescent paint and a self-made measurement system. This measurement is conducted at the outlet of the cascade wind tunnel at the Mach numbers 0.3 and 0.4, attack angle about –20°, ambient pressure 95.4 kPa and temperature 15 °C. The vane under study owns a large camber angle of ...
基金co-supported by the National Natural Science Foundation of China(Grants Nos.51576162 and 51536006)
文摘In the current study, the effects of a combined application between micro-vortex generator and boundary layer suction on the flow characteristics of a high-load compressor cascade are investigated. The micro-vortex generator with a special configuration and the longitudinal suction slot are adopted. The calculated results show that a reverse flow region, which is considered the main reason for occurring stall at 7.9° incidence, grows and collapses rapidly near the leading edge and leads to two critical points occurring on the end-wall with the increasing incidence in the baseline. As the micro-vortex generator is introduced in the baseline cascade, the corner separation is switched to a trailing edge separation by the thrust from the induced vortex. Meanwhile, the occurrence of failure is delayed due to the mixed low energy fluid and main flow. The synergistic effects between the micro-vortex generator and the boundary layer suction on the performance of the cascade are superior to the baseline at all the incidence conditions before the occurrence of failure, and the sudden deterioration of the cascade occurs at 10.3° incidence. The optimal results show that the farther upstream suction position, the lower total pressure loss of the cascade with vortex generator at the near stall condition. Moreover, the induced vortex with a leg can migrate the accumulated low energy fluid backward to delay the occurrence of stall.
基金the financial supports from the Chaipattana FoundationKasetsart University Research and Development Institute(KURDI)the scholarship for his PhD studies provided by the Faculty of Engineering,Kasetsart University
文摘Root tensile strength is an important factor controlling the performance of bio-slope stabilization works. Due to evapotranspiration and climate factors, the root moisture content and its suction can vary seasonally in practice and may not equal soil suction. The influences of suction and root moisture contents were investigated on Chrysopogon zizanioides(vetiver grass) root tensile strength. The root specimens were equilibrated with moist air in different suction conditions(0, 10, 20, and 50 kPa), prior to root tension tests. The root-water characteristic curve or relationship between root moisture and suction, was determined. The increase in suction resulted in decreased tensile strengths of the grass roots, particularly those with diameter of about 0.2 mm, which constituted 50.7% of all roots. For 1 mm roots, the tensile strength appeared to be unaffected by suction increase. The average root tensile strengths were used to estimate the root cohesion in slope stability analysis to find variation of safety factors of a bioengineered slope in different suction conditions. The analysis showed that the critical condition of slope with the lowest factor of safety would happen when the soil suction was zero and the root suction was high. Such condition may occur during a heavy rain period after a prolonged drought.
基金financially supported by the National Natural Science Foundation of China(Grant No.51078227)Shandong Natural Science Foundation(Grant No.ZR2009FM003)
文摘Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was developed with Z_SOIL software. The numerical model was calibrated against experimental results. Soil deformation and earth pressures on skirted caissons were investigated by using the finite element model to extend the model tests. It shows that the "skirted" structure can significantly increase the lateral capacity and limit the deflection, especially suitable for offshore wind turbines, compared with regular suction caissons without the "skirted" at the same load level. In addition, appropriate determination of rotation centers plays a crucial role in calculating the lateral capacity by using the analytical method. It was also found that the rotation center is related to dimensions of skirted suction caissons and loading process, i.e. the rotation center moves upwards with the increase of the "skirted" width and length; moreover, the rotation center moves downwards with the increase of loading and keeps constant when all the sand along the caisson's wall yields. It is so complex that we cannot simply determine its position like the regular suction caisson commonly with a specified position to the length ratio of the caisson.
基金supported by China Postdoctoral Science Foundationa key project of the National Natural Science Foundation of China (No. 51236006)
文摘Based on the investigation of mid-span local boundary layer suction and positive bowed cascade, a coupled local tailored boundary layer suction and positive bowed blade method is developed to improve the performance of a highly loaded diffusion cascade with less suction slot. The effectiveness of the coupled method under different inlet boundary layers is also investigated.Results show that mid-span local boundary layer suction can effectively remove trailing edge separation, but deteriorate the flow fields near the endwall. The positive bowed cascade is beneficial for reducing open corner separation, but is detrimental to mid-span flow fields. The coupled method can further improve the performance and flow field of the cascade. The mid-span trailing edge separation and open corner separation are eliminated. Compared with linear cascade with suction, the coupled method reduces overall loss of the cascade by 31.4% at most. The mid-span loss of the cascade decreases as the suction coefficient increases, but increases as bow angle increases. The endwall loss increases as the suction coefficient increases. By contrast, the endwall loss decreases significantly as the bow angle increases. The endwall loss of coupled controlled cascade is higher than that of bowed cascade with the same bow angle because of the spanwise inverse ‘‘C" shaped static pressure distribution. Under different inlet boundary layer conditions, the coupled method can also improve the cascade effectively.
基金Project (No. 50408023) supported by National Natural ScienceFoundation of China
文摘A laboratory study was carried out on both natural and compacted specimens to investigate the complex soil-water interaction in an unsaturated expansive clay. The laboratory study includes the measurement of soil-water characteristic curves, 1D free swelling tests, measurement of swelling pressure and shrinkage tests. The test results revealed that the air-entry value of the natural specimen was quite low due to cracks and fissures present. The hydraulic hysteresis of the natural specimen was relatively insignificant as compared with the compacted specimen. Within a suction range 0 to 500 kPa, a bilinear relationship between free swelling strain (or swelling pressure) and initial soil suction was observed for both the natural and compacted specimens. As a result of over-consolidation and secondary structures such as cementation and cracks, the natural specimens exhibited significant lower swelling (or swelling pressure) than the compacted specimen. The change of matric suction exerts a more significant effect on the water phase than on the soil skeleton for this expansive clay.
文摘Investment and suction casting (ISC) represents an economic and promising process route to fabricate auto-motive exhaust valves of γ-TiAI based alloys, but information available on the metal flow and the temperature changeseduring mould filling and solidification process for the ISC process is meager. A sequentially coupled mathematical flow-thermal model, based on the commercial finite-volume/finite-difference code FLOW-3D and the finite-element code PROCAST, has been developed to investigate the ISC process. In term of calcu-lating the flow and temperature fields during the filling and solidification stages, potential defects including the gas bubbles and the surface air entrainment occurred in the mould filling process and the shrinkage porosities formed in the solidification process are predicted and the reasons for the formation of these defects are also analyzed. The effects of filling pressure difference control methods and moulds on gas bubble and surface air entrainment behavior are presented. It is found that by changing the filling pressure difference control methods from general suction casting to "air leakage" suction casting and reducing air leakage flow rates, the gas bubbles are eliminated effectively, and the surface air entrainment attenuate dramatically. With resort to a mould with a tetragonal runner, the surface air entrainment decrease to the lowest level. Finally, the water analogue and suction casting experiments of exhaust valves are implemented for further validation of the simulation results.
基金Project(2012zzts082)supported by the Fundamental Research Funds of Central South University,ChinaProject(02JJY2005)supported by the Natural Science Foundation of Hunan Province,ChinaProject(20130843023)supported by China Scholarship Council
文摘Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.
基金financially supported by the National Natural Science Foundation of China(Nos.51171035 and 11174044)
文摘The microstructure and hydrogen storage properties of low V content (Ti0.46Cr0.54)100-xVx (x = 2.5-7.1, at%) and (TiyCr1-y)95V5 (y= 0.38-0.54) alloys were investigated. These alloys were prepared by arc melting and copper mould suction casting. The structures of as-cast (Ti0.46Cr0.54)100-xVx (x = 2.5, 5.0, and 7.1) alloy ingots evolve with V contents from pure Laves-(x = 2.5) to dual-phase TiCr2-BCC structures (5.0 and 7.1), whereas the suction-cast (Ti0.46Cr0.54)100-xVx (x =2.5, 5.0, and 7.1) alloys only contain single BCC phase. The suction-cast alloy rod (Ti0.46Cr0.54)95V5, containing only 5.0 at% V is shown to possess the optimum hydrogen absorption capacity, with the maximum hydrogen content of 3.14 wt%. Furthermore, the hydrogen storage properties of the suction-cast low V alloys (TiyCr1-y)95V5 (y = 0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14 cluster [TiTCrs] have good hydrogen storage properties.