A novel method to characterize CMOS process fluctuations in subthreshold current mirrors (SCM) is reported. The proposed model is succinct in methodology and calculation complexity compared with previous statistical...A novel method to characterize CMOS process fluctuations in subthreshold current mirrors (SCM) is reported. The proposed model is succinct in methodology and calculation complexity compared with previous statistical models. However,it provides favorable estimations of CMOS process fluctuations on the SCM circuit, which makes it promising for engineering applications. The model statistically abstracts physical parameters, which depend on the IC process, into random variables with certain mean values and standard deviations, while aggregating all the random impacts into a discrete martingale. The correctness of the proposed method is experimentally verified on an SCM circuit implemented in an SMIC 0.18μm CMOS 1P6M mixed signal process with a conversion factor of 100 in an input range from 100pA to lμA. The pro- posed theory successfully predicts - 10% of die-to-die fluctuation measured in the experiment, and also suggests the -lmV of threshold voltage standard deviation over a single die,which meets the process parameters suggested by the design kit from the foundry. The deviations between calculated probabilities and measured data are less than 8%. Meanwhile, pertinent suggestions concerning high fluctuation tolerance subthreshold analog circuit design are also made and discussed.展开更多
The two-dimensional models for symmetrical double-material double-gate (DM-DG) strained Si (s-Si) metal-oxide semiconductor field effect transistors (MOSFETs) are presented. The surface potential and the surface...The two-dimensional models for symmetrical double-material double-gate (DM-DG) strained Si (s-Si) metal-oxide semiconductor field effect transistors (MOSFETs) are presented. The surface potential and the surface electric field ex- pressions have been obtained by solving Poisson's equation. The models of threshold voltage and subthreshold current are obtained based on the surface potential expression. The surface potential and the surface electric field are compared with those of single-material double-gate (SM-DG) MOSFETs. The effects of different device parameters on the threshold voltage and the subthreshold current are demonstrated. The analytical models give deep insight into the device parameters design. The analytical results obtained from the proposed models show good matching with the simulation results using DESSIS.展开更多
Dual material gate SOI MOSFET with asymmetrical halo can suppress short channel effect and increase carriers transport efficiency. The analytical model of its subthreshold drain current is derived based on the explici...Dual material gate SOI MOSFET with asymmetrical halo can suppress short channel effect and increase carriers transport efficiency. The analytical model of its subthreshold drain current is derived based on the explicit solution of two-dimensional Poisson’s equation in the depletion region. The model takes into consideration the channel length modulation effect and the contribution of the back channel current component. Its validation is verified by comparision with two dimensional device simulator MEDICI.展开更多
The present work gives some insight into the subthreshold behaviour of short-channel double-material- gate strained-silicon on silicon-germanium MOSFETs in terms of subthreshold swing and off-current. The formu- latio...The present work gives some insight into the subthreshold behaviour of short-channel double-material- gate strained-silicon on silicon-germanium MOSFETs in terms of subthreshold swing and off-current. The formu- lation of subthreshold current and, thereupon, the subthreshold swing have been done by exploiting the expression of potential distribution in the channel region of the device. The dependence of the subthreshold characteristics on the device parameters, such as Ge mole fraction, gate length ratio, work function of control gate metal and gate length, has been tested in detail. The analytical models have been validated by the numerical simulation results that were obtained from the device simulation software ATLASTM by Silvaco Inc.展开更多
An analytical model for the subthreshold current of a strained-Si metal-oxide-semiconductor field-effect transistor (MOSFET) is developed by solving the two-dimensional (2D) Poisson equation and the conventional drift...An analytical model for the subthreshold current of a strained-Si metal-oxide-semiconductor field-effect transistor (MOSFET) is developed by solving the two-dimensional (2D) Poisson equation and the conventional drift-diffusion theory. Model verification is carried out using the 2D device simulator ISE. Good agreement is obtained between the model's calculations and the simulated results. By analyzing the model, the dependence of current on the strained-Si layer strain, doping concentration, source/drain junction depths and substrate voltage is studied. This subthreshold current model provides valuable information for strained-Si MOSFET design.展开更多
This paper takes full advantages of the I-V transconductance characteristics of metal-oxide semiconductor field effect transistor (MOSFET) operating in the subthreshold region and the enhancement pre-regulator techn...This paper takes full advantages of the I-V transconductance characteristics of metal-oxide semiconductor field effect transistor (MOSFET) operating in the subthreshold region and the enhancement pre-regulator technique with the high gain negative feedback loop. The proposed reference circuit, designed with the SMIC 0.18 μm standard complementary metal-oxide semiconductor (CMOS) logic process technology, exhibits a stable current of about 1.701 μA with much low temperature coefficient (TC) of 2.5×10^-4μA/℃ in the temperature range of-40 to 150℃ at 1.5 V supply voltage, and also achieves a best PSRR over a broad frequency. The PSRR is about - 126 dB at DC frequency and remains -92 dB at the frequency higher 100 MHz. Moreover the proposed reference circuit operates stably at the supply voltage higher 1.2 V and has good process compatibility.展开更多
通过自洽求解二维泊松方程和薛定谔方程发现栅-漏间隙中的强场峰两侧的异质结能带产生巨大畸变,使部分二维电子气不能通过强场峰而形成局域电子气。从电子气补偿效应出发研究了外沟道夹断前后的沟道电阻变化。研究了从外沟道渗透到内沟...通过自洽求解二维泊松方程和薛定谔方程发现栅-漏间隙中的强场峰两侧的异质结能带产生巨大畸变,使部分二维电子气不能通过强场峰而形成局域电子气。从电子气补偿效应出发研究了外沟道夹断前后的沟道电阻变化。研究了从外沟道渗透到内沟道的电场梯度和缓冲层沟道阱,发现了新的电场梯度引起的能带下弯(Electric field gradient induced band bowing,EFGIBB)效应。从漏电压引起的电势下降(Drain-induced barrier lowering,DIBL)和EFGIBB两效应出发建立起新的穿通阱模型,由此解释了实验中观察到的各类阈值电压负移、亚阈值电流和穿通等沟道夹断以后的行为,发现了由强负栅压引起的新穿通现象。最后讨论了新穿通行为对器件性能的影响,探索优化设计器件结构,改善器件性能的新途径。展开更多
文摘A novel method to characterize CMOS process fluctuations in subthreshold current mirrors (SCM) is reported. The proposed model is succinct in methodology and calculation complexity compared with previous statistical models. However,it provides favorable estimations of CMOS process fluctuations on the SCM circuit, which makes it promising for engineering applications. The model statistically abstracts physical parameters, which depend on the IC process, into random variables with certain mean values and standard deviations, while aggregating all the random impacts into a discrete martingale. The correctness of the proposed method is experimentally verified on an SCM circuit implemented in an SMIC 0.18μm CMOS 1P6M mixed signal process with a conversion factor of 100 in an input range from 100pA to lμA. The pro- posed theory successfully predicts - 10% of die-to-die fluctuation measured in the experiment, and also suggests the -lmV of threshold voltage standard deviation over a single die,which meets the process parameters suggested by the design kit from the foundry. The deviations between calculated probabilities and measured data are less than 8%. Meanwhile, pertinent suggestions concerning high fluctuation tolerance subthreshold analog circuit design are also made and discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376099,11235008,and 61205003)
文摘The two-dimensional models for symmetrical double-material double-gate (DM-DG) strained Si (s-Si) metal-oxide semiconductor field effect transistors (MOSFETs) are presented. The surface potential and the surface electric field ex- pressions have been obtained by solving Poisson's equation. The models of threshold voltage and subthreshold current are obtained based on the surface potential expression. The surface potential and the surface electric field are compared with those of single-material double-gate (SM-DG) MOSFETs. The effects of different device parameters on the threshold voltage and the subthreshold current are demonstrated. The analytical models give deep insight into the device parameters design. The analytical results obtained from the proposed models show good matching with the simulation results using DESSIS.
基金This work was supported by the National Natural Science Foundation of China (No60472003)
文摘Dual material gate SOI MOSFET with asymmetrical halo can suppress short channel effect and increase carriers transport efficiency. The analytical model of its subthreshold drain current is derived based on the explicit solution of two-dimensional Poisson’s equation in the depletion region. The model takes into consideration the channel length modulation effect and the contribution of the back channel current component. Its validation is verified by comparision with two dimensional device simulator MEDICI.
文摘The present work gives some insight into the subthreshold behaviour of short-channel double-material- gate strained-silicon on silicon-germanium MOSFETs in terms of subthreshold swing and off-current. The formu- lation of subthreshold current and, thereupon, the subthreshold swing have been done by exploiting the expression of potential distribution in the channel region of the device. The dependence of the subthreshold characteristics on the device parameters, such as Ge mole fraction, gate length ratio, work function of control gate metal and gate length, has been tested in detail. The analytical models have been validated by the numerical simulation results that were obtained from the device simulation software ATLASTM by Silvaco Inc.
基金supported by the National Ministries and Commissions (Grant Nos.51308040203 and 6139801)the Fundamental Research Funds for the Central Universities (Grant Nos.72105499 and 72104089)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2010JQ8008)
文摘An analytical model for the subthreshold current of a strained-Si metal-oxide-semiconductor field-effect transistor (MOSFET) is developed by solving the two-dimensional (2D) Poisson equation and the conventional drift-diffusion theory. Model verification is carried out using the 2D device simulator ISE. Good agreement is obtained between the model's calculations and the simulated results. By analyzing the model, the dependence of current on the strained-Si layer strain, doping concentration, source/drain junction depths and substrate voltage is studied. This subthreshold current model provides valuable information for strained-Si MOSFET design.
基金Supported by the National Natural Science Foundation of China (60376019)
文摘This paper takes full advantages of the I-V transconductance characteristics of metal-oxide semiconductor field effect transistor (MOSFET) operating in the subthreshold region and the enhancement pre-regulator technique with the high gain negative feedback loop. The proposed reference circuit, designed with the SMIC 0.18 μm standard complementary metal-oxide semiconductor (CMOS) logic process technology, exhibits a stable current of about 1.701 μA with much low temperature coefficient (TC) of 2.5×10^-4μA/℃ in the temperature range of-40 to 150℃ at 1.5 V supply voltage, and also achieves a best PSRR over a broad frequency. The PSRR is about - 126 dB at DC frequency and remains -92 dB at the frequency higher 100 MHz. Moreover the proposed reference circuit operates stably at the supply voltage higher 1.2 V and has good process compatibility.
文摘通过自洽求解二维泊松方程和薛定谔方程发现栅-漏间隙中的强场峰两侧的异质结能带产生巨大畸变,使部分二维电子气不能通过强场峰而形成局域电子气。从电子气补偿效应出发研究了外沟道夹断前后的沟道电阻变化。研究了从外沟道渗透到内沟道的电场梯度和缓冲层沟道阱,发现了新的电场梯度引起的能带下弯(Electric field gradient induced band bowing,EFGIBB)效应。从漏电压引起的电势下降(Drain-induced barrier lowering,DIBL)和EFGIBB两效应出发建立起新的穿通阱模型,由此解释了实验中观察到的各类阈值电压负移、亚阈值电流和穿通等沟道夹断以后的行为,发现了由强负栅压引起的新穿通现象。最后讨论了新穿通行为对器件性能的影响,探索优化设计器件结构,改善器件性能的新途径。