期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型 被引量:1
1
作者 林顺富 李毅 +2 位作者 沈运帷 林屹峰 李东东 《电力自动化设备》 EI CSCD 北大核心 2024年第3期127-133,共7页
为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和... 为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和辅助分类子任务网络;在子任务网络中,通过引入卷积块注意力模块自适应分配特征注意力权重,以减小不重要因素在模型训练过程中的影响;将辅助分类子任务网络的输出作为主回归子任务网络输出的门控单元,实现最终的负荷分解。基于公开数据集的算例结果表明,所提负荷分解模型比现有负荷分解模型具有更优的分解精度和泛化能力。 展开更多
关键词 负荷分解 全卷积去噪自编码器 注意力模块 子任务网络 门控单元
在线阅读 下载PDF
一种改进的自动分层算法BMAXQ 被引量:1
2
作者 胡坤 余雪丽 李志 《计算机工程与应用》 CSCD 北大核心 2011年第30期1-3,共3页
针对MAXQ算法存在的弊端,提出一种改进的分层学习算法BMAXQ。该方法修改了MAXQ的抽象机制,利用BP神经网络的特点,使得Agent能够自动发现子任务,实现各分层的并行学习,适应动态环境下的学习任务。
关键词 分层强化学习 MAXQ算法 BP神经网络 子任务
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部