P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still...P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries.展开更多
Isomorphic substitution of ferric ion(Fe~(3+))by aluminum ion(Al~(3+))in iron(hydro)oxides is ubiquitous in natural environments.Aluminum substitution inevitably leads to changes in the microstructures,physicochemical...Isomorphic substitution of ferric ion(Fe~(3+))by aluminum ion(Al~(3+))in iron(hydro)oxides is ubiquitous in natural environments.Aluminum substitution inevitably leads to changes in the microstructures,physicochemical properties,and surface reactions of iron(hydro)oxides,which may have great impacts on the sequestration of nutrients and contaminants in soils and aquatic environments.Over the past decades,the structural properties and surface reactivity of Al-substituted iron(hydro)oxides have been intensively studied.Iron(hydro)oxides in various structural forms and with different Al substitution amounts present high application potentials in addressing environmental issues.A timely summary of the structural properties and interfacial reactions of the most common and representative Al-substituted iron(hydro)oxides is of significance.Herein,the effects of Al substitution on the structural properties and surface activities of iron(hydro)oxides were clarified according to the microstructure,crystal facets,surface site type and density,interfacial reaction mechanisms,and modeling parameters of iron(hydro)oxides.This review systematically elucidates how Al substitution affects the structural properties and surface reactions of iron(hydro)oxides,including the well crystallized goethite and hematite and the poorly crystallized ferrihydrite,providing theoretical guidance for further exploration of the mineralogical characteristics and environmental geochemical behaviors of iron(hydro)oxides.展开更多
Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials ...Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.展开更多
Compared to organic thin films,organic single crystals offer significant potential in organic phototransistors(OPTs)due to their enhanced charge transport,large surface area,and defect-free nature.However,the developm...Compared to organic thin films,organic single crystals offer significant potential in organic phototransistors(OPTs)due to their enhanced charge transport,large surface area,and defect-free nature.However,the development of n-type semiconductors has lagged behind p-type semiconductors.To enhance semiconductor device performance,a doping process can be employed,which typically involves the introduction of charged impurities into the crystalline semiconducting material.Its aim is to reduce the Ohmic losses,increase carrier density,improve transport capabilities,and facilitate effective carrier injection,ultimately enhancing the electrical properties of the material.Traditional doping processes,however,often pose a risk of damaging the structure of single crystals.In this study,we have synthesized novel cyanosubstituted chiral perylene diimides,which self-assemble into two-dimensional single crystals that can be used for n-type semiconductor devices.We have employed a surface doping strategy using diethylamine vapor without disrupting the crystal structure.The fabricated devices exhibit significantly higher charge transport properties after doping,achieving a maximum electron mobility of 0.14 cm^(2)V^(-1)s^(-1),representing an improvement of over threefold.Furthermore,the optoelectronic performance of the doped devices has significantly improved,with the external quantum efficiency increased by over 9 times and the significantly improved response time.These results suggest that our surface doping technology is a promising way for enhancing the performance of 2D organic single-crystal OPTs.展开更多
Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3P...Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.展开更多
The thermal Claisen rearrangement of O-allyl substituted isotetronic acids 1 was successfully carried out within a glass microreactor operated with temperature at 150℃and a flow rate of 1 mL/h.The strategy provides a...The thermal Claisen rearrangement of O-allyl substituted isotetronic acids 1 was successfully carried out within a glass microreactor operated with temperature at 150℃and a flow rate of 1 mL/h.The strategy provides an efficient alternative way toβ-allyl substituted isotetronic acid derivatives 2 in high yields with much accelerated reaction speed.展开更多
Aim and Method Comparative molecular field analysis (CoMFA), a threedimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a novelseries of C-3 substituted 4, 6-dichloioindole-2-carbo...Aim and Method Comparative molecular field analysis (CoMFA), a threedimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a novelseries of C-3 substituted 4, 6-dichloioindole-2-carboxylic acids to study the relationship betweentheir structure and the affinity for the glycine site of the NMDA receptor. Result Hie coefficientsof cross-validation q^2 and non cross-validation r^2 for the model established by the study are0.744 and 0.993, respectively, the value of variance ratio F is 261.343, and standard error estimate(SE) is 0.039. Conclusion These values indicate that the CoMFA model may have a good prediction forthe activity of C-3 substituted 4, 6-dichloroin-dole-2-carboxylic acids. As a consequence, thepredicted activity values of new designed compounds supports our conclusion from the model.展开更多
An efficient regioselective Friedel-Crafts hydroxyalkylation of N-substituted glyoxylamide with various indoles catalyzed by Lewis acids was developed. The reactions proceeded smoothly at room temperature and the 2-hy...An efficient regioselective Friedel-Crafts hydroxyalkylation of N-substituted glyoxylamide with various indoles catalyzed by Lewis acids was developed. The reactions proceeded smoothly at room temperature and the 2-hydroxy-2-(1H-indol-3-yl)-N-substituted acetamide resulted from the reactions catalyzed by FeSO4 were synthesized in excellent yields (up to 93%). While the bisindole compounds were obtained when FeCl3 was used as a catalyst in excellent yields (up to 92%). A possible mechanism was proposed.展开更多
A novel approach to the synthesis of 6, 7-disubstituted-1H-quinoxalin-2-ones is described.The title compounds were regioselectively prepared by starting from substituted phenylamines andchloroacetyl chloride through t...A novel approach to the synthesis of 6, 7-disubstituted-1H-quinoxalin-2-ones is described.The title compounds were regioselectively prepared by starting from substituted phenylamines andchloroacetyl chloride through the efficient sequence of acylation, nitration, reduction, intramolecular alkylation, and oxidation.展开更多
The seleno substituted aromatic compounds were prepared via the Diels-Alder reaction of seleno substituted 3-sulfolenes with dimethyl acetylenedicarboxylate followed by DDQ dehydrogenation.
An efficient synthesis of 3,4-dihydropyrimidine 2 (1H)-ones and thiones (3,4-DHPMs) core was prepared by one-pot threecomponent Biginelli condensation and which was catalyzed by trifluoromethane sulfonic acid. The...An efficient synthesis of 3,4-dihydropyrimidine 2 (1H)-ones and thiones (3,4-DHPMs) core was prepared by one-pot threecomponent Biginelli condensation and which was catalyzed by trifluoromethane sulfonic acid. The classical BigneUi reaction has been extended by the use of N-substituted benzoxazolyl semicarbazides and thiosemicarbazides and this method has the advantage of excellent yields and short reaction times. ?2009 M. Saranga Pard. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (D...[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.展开更多
A novel method to prepare guanidine substituted aminoglycoside derivatives was developed.Free guanidine reacted with Cbz-protected aminoglycosides to produce guanidinylcarbonyl substituted derivatives.A methoxycarbony...A novel method to prepare guanidine substituted aminoglycoside derivatives was developed.Free guanidine reacted with Cbz-protected aminoglycosides to produce guanidinylcarbonyl substituted derivatives.A methoxycarbonyl-protected intermediate was isolated,and the mechanism of guanidinylcarbonyl modification was proposed.With this method,six per- or part-guanidylcarbonyl substituted aminoglycosides were successfully obtained in good yields.Their in vitro antibacterial activities were essayed.展开更多
A series of chromone derivatives containing substituted pyrazole were designed and synthesized.Preliminary bioassays showed that most of the synthesized compounds exhibited good nematicidal activity in vivo against Me...A series of chromone derivatives containing substituted pyrazole were designed and synthesized.Preliminary bioassays showed that most of the synthesized compounds exhibited good nematicidal activity in vivo against Meloidogyne incognita at 10 mg/L. Among the tested compounds, A10 and A11 exhibited 100% inhibition rates. In addition, the molecular docking results indicated that both compound A10 and A11 interacts with amino acid residue Tyr121, Trp279, Tyr70, Trp84 and Phe330 of ACh E via hydrogen bond and p–p stacking. This investigation suggested that the chromone containing substituted pyrazole scaffold could be further optimized to explore novel, high-bioactivity nematicidal leads.展开更多
A molecular structural characterization (MSC) method called molecular vertexes correlative index (MVCI) was used to describe the structures of 30 substituted aromatic compounds. Through multiple linear regression ...A molecular structural characterization (MSC) method called molecular vertexes correlative index (MVCI) was used to describe the structures of 30 substituted aromatic compounds. Through multiple linear regression (MLR) and stepwise multiple regression (SMR), a quantitative structure-toxicity relationship (QSTR) model with 4 variables was obtained. The correlation coefficient (R) of the model was 0.9467. Through partial least-squares regression (PLS), another QSTR model with 5 principal components was obtained. The correlation coefficient (R) of the model was 0.9518. Both models were evaluated by performing the cross-validation with the leave-one-out (LOO) procedure and the Cross-Validation (CV) correlation coefficients (Rcv) were 0.9208 and 0.9214, respectively. The results suggested good stability and predictability of the models, and the molecular vertexes correlative index could successfully describe the structures of the substituted aromatic compounds.展开更多
Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using...Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using B3LYP method of density functional theory (DFT) at the 6-311G^** level. Moreover, a 3-parameter (molecular average polarizability (α), heat energy corrected value (Eth) and the most positive hydrogen atomic charge (qH^+)) correlation model with R^2 = 0.981 and q^2 = 0.967 to predict -1gEC50 was obtained from experimental data based on the above-mentioned parameters as theoretical descriptors. Therein a was the most significant on -1gEC50. Variance Inflation Factors (VIF), t-value and cross-validation were applied to verify the model, confirming that the resultant model has fairly better stability and predictive ability to predict -1gEC50 of similar compounds.展开更多
Nanoparticles of hydroxyapatite(HAP), strontium half substituted hydroxyapatite (SrCaHAP) and strontium totally substituted hydroxyapatite (SrHAP) were prepared by sol-gel-supercritical fluid drying (SCFD) met...Nanoparticles of hydroxyapatite(HAP), strontium half substituted hydroxyapatite (SrCaHAP) and strontium totally substituted hydroxyapatite (SrHAP) were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by element content analysis, FT-IR, XRD and TEM, and the effects of strontium substitution on crystal structure, crystallinity, particle shape and antibacterial properties of the nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results show that strontium can half and totally substitute for calcium and enter the structure of apatite according to the initial atomic ratios of Sr/[Sr+Ca] as 0.5, 1. The substitution decreases the IR wavenumbers of SrCaHAP and SrHAP, and changes the morphology of the nanoparticles from short rod shaped HAP to needle shaped SrCaHAP, and back to short rod shaped SrHAP. The crystallinity of HAP is higher than that of SrCaHAP, but is lower than that of SrHAP. Moreover, the antibacterial property of SrCaHAP and SrHAP are improved after the calcium is half and totally substituted by strontium.展开更多
a, a'-Bis(substituted benzylidene)cycloalkanones were efficiently prepared from cycloalkanones and benzaldehydes in [bmim][BF4] by using iron(III) chloride hexahydrate as a catalyst. It is shown that [bmim][BF4] a...a, a'-Bis(substituted benzylidene)cycloalkanones were efficiently prepared from cycloalkanones and benzaldehydes in [bmim][BF4] by using iron(III) chloride hexahydrate as a catalyst. It is shown that [bmim][BF4] and iron(III) chloride hexahydrate can be quantitatively recovered and be reused effectively for many times. Compared with the known methods, this novel process has the advantage of being an envkonmentally benign process together with good yields and mild reaction conditions.展开更多
The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0....Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0.07503-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, Hz-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experi- ments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL.min-l .cm-2 at 900 with I mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+〉La3+〉SrZ+〉Ca2+).展开更多
基金supported by the National Key Scientific Research Project(No.2022YFB2502300)the National Natural Science Foundation of China(No.52071085).
文摘P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.42207352,42007020,and 42007015)the Natural Science Fund for Excellent Young Scholars of Hainan Province,China(No.324YXQN421)。
文摘Isomorphic substitution of ferric ion(Fe~(3+))by aluminum ion(Al~(3+))in iron(hydro)oxides is ubiquitous in natural environments.Aluminum substitution inevitably leads to changes in the microstructures,physicochemical properties,and surface reactions of iron(hydro)oxides,which may have great impacts on the sequestration of nutrients and contaminants in soils and aquatic environments.Over the past decades,the structural properties and surface reactivity of Al-substituted iron(hydro)oxides have been intensively studied.Iron(hydro)oxides in various structural forms and with different Al substitution amounts present high application potentials in addressing environmental issues.A timely summary of the structural properties and interfacial reactions of the most common and representative Al-substituted iron(hydro)oxides is of significance.Herein,the effects of Al substitution on the structural properties and surface activities of iron(hydro)oxides were clarified according to the microstructure,crystal facets,surface site type and density,interfacial reaction mechanisms,and modeling parameters of iron(hydro)oxides.This review systematically elucidates how Al substitution affects the structural properties and surface reactions of iron(hydro)oxides,including the well crystallized goethite and hematite and the poorly crystallized ferrihydrite,providing theoretical guidance for further exploration of the mineralogical characteristics and environmental geochemical behaviors of iron(hydro)oxides.
基金financially supported by the Scientific and Technological Plan Project of Guizhou Province ([2024]054)Additional support came from the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (2020-520000-83-01324061)the Guizhou Engineering Research Center for Smart Services (2203-520102-04-04-298868)。
文摘Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.
基金supported by the National Research Foundation(NRF)of Korea(Nos.2023R1A2C3007715,2021R1A4A1032515,RS-2023-00281944)funded by the Ministry of Science and ICT(MSIT)of Korea+1 种基金Korea Toray Science Foundation,Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHQ035)Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-081)。
文摘Compared to organic thin films,organic single crystals offer significant potential in organic phototransistors(OPTs)due to their enhanced charge transport,large surface area,and defect-free nature.However,the development of n-type semiconductors has lagged behind p-type semiconductors.To enhance semiconductor device performance,a doping process can be employed,which typically involves the introduction of charged impurities into the crystalline semiconducting material.Its aim is to reduce the Ohmic losses,increase carrier density,improve transport capabilities,and facilitate effective carrier injection,ultimately enhancing the electrical properties of the material.Traditional doping processes,however,often pose a risk of damaging the structure of single crystals.In this study,we have synthesized novel cyanosubstituted chiral perylene diimides,which self-assemble into two-dimensional single crystals that can be used for n-type semiconductor devices.We have employed a surface doping strategy using diethylamine vapor without disrupting the crystal structure.The fabricated devices exhibit significantly higher charge transport properties after doping,achieving a maximum electron mobility of 0.14 cm^(2)V^(-1)s^(-1),representing an improvement of over threefold.Furthermore,the optoelectronic performance of the doped devices has significantly improved,with the external quantum efficiency increased by over 9 times and the significantly improved response time.These results suggest that our surface doping technology is a promising way for enhancing the performance of 2D organic single-crystal OPTs.
基金This work was supported by the National Natural Science Foundation of China (No.10774039).
文摘Quantum chemical calculations were used to estimate the bond dissociation energies (BDEs) for 13 substituted chlorobenzene compounds. These compounds were studied by the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G^** and 6-311G^** basis sets. The results show that B3P86/6-311G^** method is the best method to compute the reliable BDEs for substituted chlorobenzene compounds which contain the C-C1 bond. It is found that the C-C1 BDE depends strongly on the computational method and the basis sets used. Substituent effect on the C-C1 BDE of substituted chlorobenzene compounds is further discussed. It is noted that the effects of substitution on the C-C1 BDE of substituted chlorobenzene compounds are very insignificant. The energy gaps between the HOMO and LUMO of studied compounds estimate the relative thermal stability ordering are also investigated and from this data we of substituted chlorobenzene compounds.
文摘The thermal Claisen rearrangement of O-allyl substituted isotetronic acids 1 was successfully carried out within a glass microreactor operated with temperature at 150℃and a flow rate of 1 mL/h.The strategy provides an efficient alternative way toβ-allyl substituted isotetronic acid derivatives 2 in high yields with much accelerated reaction speed.
文摘Aim and Method Comparative molecular field analysis (CoMFA), a threedimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a novelseries of C-3 substituted 4, 6-dichloioindole-2-carboxylic acids to study the relationship betweentheir structure and the affinity for the glycine site of the NMDA receptor. Result Hie coefficientsof cross-validation q^2 and non cross-validation r^2 for the model established by the study are0.744 and 0.993, respectively, the value of variance ratio F is 261.343, and standard error estimate(SE) is 0.039. Conclusion These values indicate that the CoMFA model may have a good prediction forthe activity of C-3 substituted 4, 6-dichloroin-dole-2-carboxylic acids. As a consequence, thepredicted activity values of new designed compounds supports our conclusion from the model.
基金the National Natural Science Foundation of China (Nos. 21472130, 81373259) for financial support of this study
文摘An efficient regioselective Friedel-Crafts hydroxyalkylation of N-substituted glyoxylamide with various indoles catalyzed by Lewis acids was developed. The reactions proceeded smoothly at room temperature and the 2-hydroxy-2-(1H-indol-3-yl)-N-substituted acetamide resulted from the reactions catalyzed by FeSO4 were synthesized in excellent yields (up to 93%). While the bisindole compounds were obtained when FeCl3 was used as a catalyst in excellent yields (up to 92%). A possible mechanism was proposed.
文摘A novel approach to the synthesis of 6, 7-disubstituted-1H-quinoxalin-2-ones is described.The title compounds were regioselectively prepared by starting from substituted phenylamines andchloroacetyl chloride through the efficient sequence of acylation, nitration, reduction, intramolecular alkylation, and oxidation.
文摘The seleno substituted aromatic compounds were prepared via the Diels-Alder reaction of seleno substituted 3-sulfolenes with dimethyl acetylenedicarboxylate followed by DDQ dehydrogenation.
文摘An efficient synthesis of 3,4-dihydropyrimidine 2 (1H)-ones and thiones (3,4-DHPMs) core was prepared by one-pot threecomponent Biginelli condensation and which was catalyzed by trifluoromethane sulfonic acid. The classical BigneUi reaction has been extended by the use of N-substituted benzoxazolyl semicarbazides and thiosemicarbazides and this method has the advantage of excellent yields and short reaction times. ?2009 M. Saranga Pard. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Supported by Shanghai Leading Academic Discipline(Project No.T1102)Shanghai Commission of Education Scientific Research Project(07zz134)~~
文摘[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.
基金National Basic Research Program(973 Program, Grant No.2004CB518904)the State New Drug Innovation (Grant No.2009ZX09301-010,2009ZX09103 -044).
文摘A novel method to prepare guanidine substituted aminoglycoside derivatives was developed.Free guanidine reacted with Cbz-protected aminoglycosides to produce guanidinylcarbonyl substituted derivatives.A methoxycarbonyl-protected intermediate was isolated,and the mechanism of guanidinylcarbonyl modification was proposed.With this method,six per- or part-guanidylcarbonyl substituted aminoglycosides were successfully obtained in good yields.Their in vitro antibacterial activities were essayed.
基金financial supported by the National Natural Science Foundation of China (No. 21672061)National Key Research Program of China (No. 2017YFD0200505)Fundamental Research Funds for the Central Universities (No. 222201718004)
文摘A series of chromone derivatives containing substituted pyrazole were designed and synthesized.Preliminary bioassays showed that most of the synthesized compounds exhibited good nematicidal activity in vivo against Meloidogyne incognita at 10 mg/L. Among the tested compounds, A10 and A11 exhibited 100% inhibition rates. In addition, the molecular docking results indicated that both compound A10 and A11 interacts with amino acid residue Tyr121, Trp279, Tyr70, Trp84 and Phe330 of ACh E via hydrogen bond and p–p stacking. This investigation suggested that the chromone containing substituted pyrazole scaffold could be further optimized to explore novel, high-bioactivity nematicidal leads.
基金supported by the Foundation of Education Bureau,Sichuan Province(09ZB036)
文摘A molecular structural characterization (MSC) method called molecular vertexes correlative index (MVCI) was used to describe the structures of 30 substituted aromatic compounds. Through multiple linear regression (MLR) and stepwise multiple regression (SMR), a quantitative structure-toxicity relationship (QSTR) model with 4 variables was obtained. The correlation coefficient (R) of the model was 0.9467. Through partial least-squares regression (PLS), another QSTR model with 5 principal components was obtained. The correlation coefficient (R) of the model was 0.9518. Both models were evaluated by performing the cross-validation with the leave-one-out (LOO) procedure and the Cross-Validation (CV) correlation coefficients (Rcv) were 0.9208 and 0.9214, respectively. The results suggested good stability and predictability of the models, and the molecular vertexes correlative index could successfully describe the structures of the substituted aromatic compounds.
基金supported by the Natural Science Foundation of Zhejiang Province (No. 2008Y507280)
文摘Toxicities (-1gEC50) of 16 phenolic compounds against Q67 were determined, and structural parameters as well as thermodynamic parameters of these compounds were obtained through fully optimized calculations by using B3LYP method of density functional theory (DFT) at the 6-311G^** level. Moreover, a 3-parameter (molecular average polarizability (α), heat energy corrected value (Eth) and the most positive hydrogen atomic charge (qH^+)) correlation model with R^2 = 0.981 and q^2 = 0.967 to predict -1gEC50 was obtained from experimental data based on the above-mentioned parameters as theoretical descriptors. Therein a was the most significant on -1gEC50. Variance Inflation Factors (VIF), t-value and cross-validation were applied to verify the model, confirming that the resultant model has fairly better stability and predictive ability to predict -1gEC50 of similar compounds.
文摘Nanoparticles of hydroxyapatite(HAP), strontium half substituted hydroxyapatite (SrCaHAP) and strontium totally substituted hydroxyapatite (SrHAP) were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by element content analysis, FT-IR, XRD and TEM, and the effects of strontium substitution on crystal structure, crystallinity, particle shape and antibacterial properties of the nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results show that strontium can half and totally substitute for calcium and enter the structure of apatite according to the initial atomic ratios of Sr/[Sr+Ca] as 0.5, 1. The substitution decreases the IR wavenumbers of SrCaHAP and SrHAP, and changes the morphology of the nanoparticles from short rod shaped HAP to needle shaped SrCaHAP, and back to short rod shaped SrHAP. The crystallinity of HAP is higher than that of SrCaHAP, but is lower than that of SrHAP. Moreover, the antibacterial property of SrCaHAP and SrHAP are improved after the calcium is half and totally substituted by strontium.
基金supported by the National Natural Science Foundation of China under grant No.20273109.
文摘a, a'-Bis(substituted benzylidene)cycloalkanones were efficiently prepared from cycloalkanones and benzaldehydes in [bmim][BF4] by using iron(III) chloride hexahydrate as a catalyst. It is shown that [bmim][BF4] and iron(III) chloride hexahydrate can be quantitatively recovered and be reused effectively for many times. Compared with the known methods, this novel process has the advantage of being an envkonmentally benign process together with good yields and mild reaction conditions.
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.
基金supported by the National Natural Science Foundation of China(51004069)the National Science Fund for Distinguished Young Scholars(51225401)+1 种基金China Postdoctoral Science Foundation(201104254)the Innovation Program of Shanghai Municipal Education Commission and Shanghai University(14YZ013 and SDCX2012002)
文摘Ba0.9R0.1Co0.TFe0.225Ta0.07503-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCoo.TFe0.225Ta0.07503-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, Hz-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experi- ments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL.min-l .cm-2 at 900 with I mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+〉La3+〉SrZ+〉Ca2+).