The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li...The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.展开更多
As the emergency power supply for a simulation substation,lead-acid batteries have a work pattern featuring noncontinuous operation,which leads to capacity regeneration.However,the accurate estimation of battery state...As the emergency power supply for a simulation substation,lead-acid batteries have a work pattern featuring noncontinuous operation,which leads to capacity regeneration.However,the accurate estimation of battery state of charge(SOC),a measurement of the amount of energy available in a battery,remains a hard nut to crack because of the non-stationarity and randomness of battery capacity change.This paper has proposed a comprehensive method for lead-acid battery SOC estimation,which may aid in maintaining a reasonable charging schedule in a simulation substation and improving battery’s durability.Based on the battery work pattern,an improved Ampere-hour method is used to calculate the SOC during constant current and constant voltage(CC/CV)charging and discharging.In addition,the combined Particle Swarm Optimization(PSO)and Least Squares Support Vector Machine(LSSVM)model is used to estimate the SOC during non-CC discharging.Experimental results show that this method is workable in online SOC estimation of working batteries in a simulation substaion,with the maximum relative error standing at only 2.1%during the non-training period,indicating a high precision and wide applicability.展开更多
文摘The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.
基金The authors received funding for this study from Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(J2021020).
文摘As the emergency power supply for a simulation substation,lead-acid batteries have a work pattern featuring noncontinuous operation,which leads to capacity regeneration.However,the accurate estimation of battery state of charge(SOC),a measurement of the amount of energy available in a battery,remains a hard nut to crack because of the non-stationarity and randomness of battery capacity change.This paper has proposed a comprehensive method for lead-acid battery SOC estimation,which may aid in maintaining a reasonable charging schedule in a simulation substation and improving battery’s durability.Based on the battery work pattern,an improved Ampere-hour method is used to calculate the SOC during constant current and constant voltage(CC/CV)charging and discharging.In addition,the combined Particle Swarm Optimization(PSO)and Least Squares Support Vector Machine(LSSVM)model is used to estimate the SOC during non-CC discharging.Experimental results show that this method is workable in online SOC estimation of working batteries in a simulation substaion,with the maximum relative error standing at only 2.1%during the non-training period,indicating a high precision and wide applicability.