The subsiding land can be extracted from Remote Sensing image based on itsspectral and spatial features. The features of subsiding land caused by raining, especially its RSinformation features and relative knowledge a...The subsiding land can be extracted from Remote Sensing image based on itsspectral and spatial features. The features of subsiding land caused by raining, especially its RSinformation features and relative knowledge are proposed. Three methods can be used to extractsubsiding land from RS image. The first is to categorize the region into different blocks (orlayers) according to their features and apply corresponding strategies for each block, the second isto identify the changeable region based on GIS firstly and then to classify those regions, and thethird is to post-process the classified image by traditional methods or ANN (Artificial NeuralNetwork) methods based on domain knowledge and GIS. Two direct extraction methods are introducedalso. One is the extraction based on the water accumulating property of subsiding land, and theother is based on the dynamic change of land cover in subsiding land.展开更多
Land subsidence and rising sea levels could result in 40% of the Mekong Delta being covered by the South China Sea within the next few decades. The impact of groundwater withdrawal, in the SE Asia mega deltas of Gange...Land subsidence and rising sea levels could result in 40% of the Mekong Delta being covered by the South China Sea within the next few decades. The impact of groundwater withdrawal, in the SE Asia mega deltas of Ganges-Brahmaputra Delta, Jakarta Delta, Chao Phraya Delta and Mekong Delta, is a major reason these deltas are sinking. There are lessons to be learned from both failures and successful remediation efforts in other mega deltas as Vietnam policy makers seek to address Mekong Delta subsidence. Without a significant Vietnam government remediation and mitigation efforts, land subsidence in the Mekong Delta will continue. Land subsidence has occurred in the Mekong Delta as a result of the retention of sediments behind the China and Laos dams on the main stem of the Mekong River, reduced flooding peaks, climate change, sea level rise, storm surges and flooding. In addition, subsidence has been exascerbated by compaction, groundwater extraction for shrimp ponds, rice paddies and the household and drinking water needs of approximately 20 million people living on the Mekong Delta in Vietnam and Cambodia. The Mekong Delta shorelines are eroding and significant land areas, including wetlands, are becoming open water. The wetlands and land mass are also subsiding as a result of the reduction in sediment deposition. Large dams on the mainstem of the Mekong River in China and Laos have reduced peak flows and reduced sediment loads in lower Mekong River. Population and industrial growth have increased groundwater extraction and salt water intrusion as the delta subsides leading to consolidation and reduction in the current plumes flowing into the South China Sea. The primary objective of this paper is to assess the impact of groundwater withdrawals for rice paddies, shrimp ponds, aquaculture, industry and drinking water on Mekong Delta land subsidence. The secondary objective is to identify mitigation efforts used in other Southeast Asia deltas and make remediation recommendations for the sinking Mekong Delta. Promising mitigation approaches are injecting river water deep into the underlying alluvial sediments, return of the sediments trapped in China and Laos reservoirs to the Mekong River mainstem, increase in the Mekong River flooding peaks, and construction of sea and floodwalls, dykes, polders and levees. The addition of Mekong River sediments to build up existing floodplains, the reduction of coastal shoreline erosion, the planting of mangroves and protection of urban and agricultural areas from being covered by the South China Sea are strategies that could help remediate land subsidence in the Mekong Delta.展开更多
Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental chall...Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.展开更多
The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region...The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region's socio-economic stability and sustainable development.The relationship between land deformation and groundwater storage Anomalies in this region remains insufficiently understood,and the driving factors behind land subsidence require further exploration.This study employs downscaled GRACE and SBAS InSAR technologies to monitor and analyze land subsidence and groundwater storage Anoma-lies in four representative cities of the North China Plain:Beijing,Tianjin,Cangzhou,and Hengshui.Using geodetector methods,the study investigates the driving factors of land subsidence,incorporating both natu-ral environmental and human activity factors.The results indicate that:(1)Groundwater storage in the North China Plain generally exhibited an overall declining trend from 2002 to 2022,with the rate of decrease weakening from southwest to northeast,showing a clear spatial clustering pattern.(2)While,land subsidence rates in the main urban areas of each city were relatively low,severe subsidence persisted in the surrounding suburban and rural areas.(3)The temporal trends of land subsidence were consistent with changes in groundwater storage across all cities.(4)Groundwater storage Anomalies emerged as the most significant factor influencing the spatial distribution of land subsidence,with a q-value of 0.387,followed by factors such as DEM,evapotranspiration,and rainfall.Seasonal characteristics were evident in land deformation corresponding to groundwater storage Anomalies:During the spring and summer irrigation periods,land subsidence occurred due to groundwater depletion,while in autumn and winter,the surface uplifted with increased groundwater storage.In Cangzhou and Hengshui,excessive deep groundwater extraction caused a lagged response in land subsidence relative to groundwater storage Anomalies.Further-more,interaction among various factors significantly amplified their influence on land subsidence.The interaction between groundwater storage Anomalies and rainfall had the strongest combined effect,under-scoring its critical role in shaping land subsidence in the study area.The findings offer valuable insights for the scientific prevention and management of land subsidence in the North China Plain.展开更多
The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.Thi...The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.This study assessed the land subsidence before and after urban expansion in five areas of Lanzhou by using slope spectrum construction method and gradient expansion intensity measurement that integrated with SBAS-InSAR technology.The results show that construction land on slopes over 20°increased significantly,accounting for 16%of new construction land.The average slope spectrum index was 4.02,with the upper slope limit rising by 8.2°.The land subsidence rate threshold increased by 10 mm/a,and the proportion of pixels experiencing subsidence greater than 5 mm/year rose from 3.63%to 5.24%.Increased construction intensity on slopes caused higher and faster subsidence,which diminished with greater distance from the expansion areas.Areas with slopes between 10°and 25°saw the greatest acceleration in subsidence.Geological composition,building density,groundwater exploitation,and cut-and-fill thickness collectively influence land subsidence rates.This study provides a scientific basis for mitigating geological disaster risks and promoting safe urban development in mountainous cities.展开更多
Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assist...Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.展开更多
The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning ...The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction.展开更多
Morphologies of deltaic strandplains are the result of multiple sedimentary dynamics interacting with climate,neotectonic and anthropic impacts.They record long-term evolution of coastal areas but also reveal past and...Morphologies of deltaic strandplains are the result of multiple sedimentary dynamics interacting with climate,neotectonic and anthropic impacts.They record long-term evolution of coastal areas but also reveal past and present hazards that can be essential to better predict risks in urbanised deltas.This paper aims to identify the effect of a long-term evolution of the prograded plain of the Tiber Delta in using current ground surface variations and geohistorical data.This study applies GIS(Geographic Information System)tools to LiDAR(Light Detection and Ranging)-derived DEM(Digital Elevation Model)data combined with stratigraphical data,aerial photography interpretation and old maps.The main outcome shows areas of subsidence are primarily located in the central part of the Tiber Delta.Lower heights at the river mouth are due to subsidence and specific lower morphologies associated with fast progradation phases,while similar low heights just north in the area of the international airport of Rome are due to subsidence alone.Subsidence under the airport is associated with the compaction of the silty clay infill of the Late Pleistocene Tiber Valley mostly deposited during the Holocene transgressive period.Only observed in the airport area,the presence of washover fans and the large extent of paleolagoons reveal the kind of risks that are increased by this subsidence.This study demonstrates that the densely urbanised central part of the Tiber Delta faces higher risks of marine submersion and coastal flooding considering ongoing relative sea level change.It also contributes to show the importance to better characterise past coastal morphologies to identify areas prone to subsidence.展开更多
Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No....Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No.2 coal mine in Xinxiang City,Henan Province,China,this study employs a comprehensive research methodology,integrating field investigations,numerical simulations,and theoretical analyses,to explore the surface subsidence features at deeply buried mining areas with thin bedrock and thick alluvial layers,to reveal the effect of alluvial thickness on the surface subsidence characteristics.The findings indicate that the surface subsidence areas span 4.2 km2 with an advanced influence distance of 540 m.The rate of surface subsidence primarily depends on the panel's position and its advancing rate.Moreover,the thickness of the alluvial layer amplifies both the extent and magnitude of surface deformation.The displacement of overlying rock primarily exhibits a two-stage progression:the thin bedrock control stage and the alluvial control stage.In the thin bedrock control stage,surface subsidence initiates with relatively low subsidence values and amplitudes.Subsequently,in the alluvial control stage,surface subsidence accelerates,leading to a rapid increase in both subsidence values and amplitudes.These characteristics of rock formation displacement result in distinct phases of surface subsidence.Furthermore,the paper addresses the utilization of surface subsidence areas and proposes a method for calculating reservoir storage capacity in these areas.According to calculations,the storage capacity amounts to 1.05e7 m^(3).The research findings provide valuable insights into the surface subsidence laws in regions with similar geological conditions and practical implications for the management and utilization of subsided areas.展开更多
0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly ...0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land.展开更多
Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection ...Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.展开更多
Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining ...Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).展开更多
In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stati...In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stations taken as reference points. Given the non-linear motions of IGS stations, the robust Kalman filtering (RKF) model was presented to determine the datum of multi-period monitoring network considering the velocity and weekly solution of IGS stations. The theory proposed was applied to monitoring mining subsidence in northern Anhui coal mine in China. According to the case study, the RKF model to establish monitoring datum is better than the prediction method and the weekly solution from IGS analysis centers (ACs), and the corresponding precision of deformation can reach up to millimeter level with 4 h observation. The research provides an efficient and accurate approach for monitoring large-area mining subsidence.展开更多
The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRT...The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.展开更多
As for the supply chain consisting of a manufacturer and multiple competing retailers, the disruption management decision is considered for the demand disruption that both the investment sensitivity coefficient and th...As for the supply chain consisting of a manufacturer and multiple competing retailers, the disruption management decision is considered for the demand disruption that both the investment sensitivity coefficient and the investment-elasticity are changed simultaneously. Meanwhile, the corresponding solutions are given for different cases of the disruption, and the characteristics of the solutions are analyzed. The production plan is proved to he robustness under certain conditions, and the production plan of the coordination strategy is investigated for the disruption with appropriate contractual arrangement, i. e. , a subside rate schedule. Mutual restraints exist between the changed investment sensitivity coefficient and the investment-elasticity when the coordination mecha- nism is used. And the more the number of the retailers in the system, the more the subside provided by the suppler on the coordinaton strategy.展开更多
Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng...Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures.展开更多
基金Under the auspices of the Research Foundation of Doctoral Point of China(No.RFDP20010290006).
文摘The subsiding land can be extracted from Remote Sensing image based on itsspectral and spatial features. The features of subsiding land caused by raining, especially its RSinformation features and relative knowledge are proposed. Three methods can be used to extractsubsiding land from RS image. The first is to categorize the region into different blocks (orlayers) according to their features and apply corresponding strategies for each block, the second isto identify the changeable region based on GIS firstly and then to classify those regions, and thethird is to post-process the classified image by traditional methods or ANN (Artificial NeuralNetwork) methods based on domain knowledge and GIS. Two direct extraction methods are introducedalso. One is the extraction based on the water accumulating property of subsiding land, and theother is based on the dynamic change of land cover in subsiding land.
文摘Land subsidence and rising sea levels could result in 40% of the Mekong Delta being covered by the South China Sea within the next few decades. The impact of groundwater withdrawal, in the SE Asia mega deltas of Ganges-Brahmaputra Delta, Jakarta Delta, Chao Phraya Delta and Mekong Delta, is a major reason these deltas are sinking. There are lessons to be learned from both failures and successful remediation efforts in other mega deltas as Vietnam policy makers seek to address Mekong Delta subsidence. Without a significant Vietnam government remediation and mitigation efforts, land subsidence in the Mekong Delta will continue. Land subsidence has occurred in the Mekong Delta as a result of the retention of sediments behind the China and Laos dams on the main stem of the Mekong River, reduced flooding peaks, climate change, sea level rise, storm surges and flooding. In addition, subsidence has been exascerbated by compaction, groundwater extraction for shrimp ponds, rice paddies and the household and drinking water needs of approximately 20 million people living on the Mekong Delta in Vietnam and Cambodia. The Mekong Delta shorelines are eroding and significant land areas, including wetlands, are becoming open water. The wetlands and land mass are also subsiding as a result of the reduction in sediment deposition. Large dams on the mainstem of the Mekong River in China and Laos have reduced peak flows and reduced sediment loads in lower Mekong River. Population and industrial growth have increased groundwater extraction and salt water intrusion as the delta subsides leading to consolidation and reduction in the current plumes flowing into the South China Sea. The primary objective of this paper is to assess the impact of groundwater withdrawals for rice paddies, shrimp ponds, aquaculture, industry and drinking water on Mekong Delta land subsidence. The secondary objective is to identify mitigation efforts used in other Southeast Asia deltas and make remediation recommendations for the sinking Mekong Delta. Promising mitigation approaches are injecting river water deep into the underlying alluvial sediments, return of the sediments trapped in China and Laos reservoirs to the Mekong River mainstem, increase in the Mekong River flooding peaks, and construction of sea and floodwalls, dykes, polders and levees. The addition of Mekong River sediments to build up existing floodplains, the reduction of coastal shoreline erosion, the planting of mangroves and protection of urban and agricultural areas from being covered by the South China Sea are strategies that could help remediate land subsidence in the Mekong Delta.
文摘Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes,CAGS(Project No.KY202302)China Geological Survey Project(DD20230719)China Geological Survey Project(DD20230427)。
文摘The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region's socio-economic stability and sustainable development.The relationship between land deformation and groundwater storage Anomalies in this region remains insufficiently understood,and the driving factors behind land subsidence require further exploration.This study employs downscaled GRACE and SBAS InSAR technologies to monitor and analyze land subsidence and groundwater storage Anoma-lies in four representative cities of the North China Plain:Beijing,Tianjin,Cangzhou,and Hengshui.Using geodetector methods,the study investigates the driving factors of land subsidence,incorporating both natu-ral environmental and human activity factors.The results indicate that:(1)Groundwater storage in the North China Plain generally exhibited an overall declining trend from 2002 to 2022,with the rate of decrease weakening from southwest to northeast,showing a clear spatial clustering pattern.(2)While,land subsidence rates in the main urban areas of each city were relatively low,severe subsidence persisted in the surrounding suburban and rural areas.(3)The temporal trends of land subsidence were consistent with changes in groundwater storage across all cities.(4)Groundwater storage Anomalies emerged as the most significant factor influencing the spatial distribution of land subsidence,with a q-value of 0.387,followed by factors such as DEM,evapotranspiration,and rainfall.Seasonal characteristics were evident in land deformation corresponding to groundwater storage Anomalies:During the spring and summer irrigation periods,land subsidence occurred due to groundwater depletion,while in autumn and winter,the surface uplifted with increased groundwater storage.In Cangzhou and Hengshui,excessive deep groundwater extraction caused a lagged response in land subsidence relative to groundwater storage Anomalies.Further-more,interaction among various factors significantly amplified their influence on land subsidence.The interaction between groundwater storage Anomalies and rainfall had the strongest combined effect,under-scoring its critical role in shaping land subsidence in the study area.The findings offer valuable insights for the scientific prevention and management of land subsidence in the North China Plain.
基金National Natural Science Foundation of China(Grant No.42271214)National Key R&D Program of China(Grant No.2022YFC3800700)+1 种基金Key Research Program of Gansu Province(Grant No.23ZDKA0004)Natural Science Foundation of Gansu Province(Grant No.21JR7RA281).
文摘The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.This study assessed the land subsidence before and after urban expansion in five areas of Lanzhou by using slope spectrum construction method and gradient expansion intensity measurement that integrated with SBAS-InSAR technology.The results show that construction land on slopes over 20°increased significantly,accounting for 16%of new construction land.The average slope spectrum index was 4.02,with the upper slope limit rising by 8.2°.The land subsidence rate threshold increased by 10 mm/a,and the proportion of pixels experiencing subsidence greater than 5 mm/year rose from 3.63%to 5.24%.Increased construction intensity on slopes caused higher and faster subsidence,which diminished with greater distance from the expansion areas.Areas with slopes between 10°and 25°saw the greatest acceleration in subsidence.Geological composition,building density,groundwater exploitation,and cut-and-fill thickness collectively influence land subsidence rates.This study provides a scientific basis for mitigating geological disaster risks and promoting safe urban development in mountainous cities.
基金supported by the Scientific and Technological Innovation Project of SHASG(SCK2022-01)National Key Research and Development Program of China(2016YFC0803109)。
文摘Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.
基金funded by the Project from the Maqu Branch of Gannan Tibetan Autonomous Prefecture Ecological Environment Bureau,China(No.33412021021)。
文摘The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction.
文摘Morphologies of deltaic strandplains are the result of multiple sedimentary dynamics interacting with climate,neotectonic and anthropic impacts.They record long-term evolution of coastal areas but also reveal past and present hazards that can be essential to better predict risks in urbanised deltas.This paper aims to identify the effect of a long-term evolution of the prograded plain of the Tiber Delta in using current ground surface variations and geohistorical data.This study applies GIS(Geographic Information System)tools to LiDAR(Light Detection and Ranging)-derived DEM(Digital Elevation Model)data combined with stratigraphical data,aerial photography interpretation and old maps.The main outcome shows areas of subsidence are primarily located in the central part of the Tiber Delta.Lower heights at the river mouth are due to subsidence and specific lower morphologies associated with fast progradation phases,while similar low heights just north in the area of the international airport of Rome are due to subsidence alone.Subsidence under the airport is associated with the compaction of the silty clay infill of the Late Pleistocene Tiber Valley mostly deposited during the Holocene transgressive period.Only observed in the airport area,the presence of washover fans and the large extent of paleolagoons reveal the kind of risks that are increased by this subsidence.This study demonstrates that the densely urbanised central part of the Tiber Delta faces higher risks of marine submersion and coastal flooding considering ongoing relative sea level change.It also contributes to show the importance to better characterise past coastal morphologies to identify areas prone to subsidence.
基金supported by the National Natural Science Foundation of China(Grant Nos.5193400852374106+5 种基金5220416352404159)China Postdoctoral Science Foundation(Grant no.2024T171006)the Fundamental Research Funds for the Central Universities(Grant Nos.2024ZKPYNY042023ZKPYNY012023YQTD02)。
文摘Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No.2 coal mine in Xinxiang City,Henan Province,China,this study employs a comprehensive research methodology,integrating field investigations,numerical simulations,and theoretical analyses,to explore the surface subsidence features at deeply buried mining areas with thin bedrock and thick alluvial layers,to reveal the effect of alluvial thickness on the surface subsidence characteristics.The findings indicate that the surface subsidence areas span 4.2 km2 with an advanced influence distance of 540 m.The rate of surface subsidence primarily depends on the panel's position and its advancing rate.Moreover,the thickness of the alluvial layer amplifies both the extent and magnitude of surface deformation.The displacement of overlying rock primarily exhibits a two-stage progression:the thin bedrock control stage and the alluvial control stage.In the thin bedrock control stage,surface subsidence initiates with relatively low subsidence values and amplitudes.Subsequently,in the alluvial control stage,surface subsidence accelerates,leading to a rapid increase in both subsidence values and amplitudes.These characteristics of rock formation displacement result in distinct phases of surface subsidence.Furthermore,the paper addresses the utilization of surface subsidence areas and proposes a method for calculating reservoir storage capacity in these areas.According to calculations,the storage capacity amounts to 1.05e7 m^(3).The research findings provide valuable insights into the surface subsidence laws in regions with similar geological conditions and practical implications for the management and utilization of subsided areas.
基金funded by the Key Research and Development Program of Shaanxi Province(No.2024SFYBXM-669)the National Natural Science Foundation of China(No.42271078)。
文摘0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land.
基金Project(2012BAB13B03)supported by the National Scientific and Technical Supporting Programs Funded of ChinaProject(41104011)supported by the National Natural Science Foundation of China+1 种基金Project(2013QNB07)supported by the Natural Science Funds for Young Scholar of China University of Mining and TechnologyProject(2012LWB32)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.
基金Project (BK20130174) supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation) Project (1101109C) supported by Jiangsu Planned Projects for Postdoctoral Research Funds,China+1 种基金Project (201325) supported by the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).
基金Projects(51174206,41204011)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPDSA1102),China
文摘In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stations taken as reference points. Given the non-linear motions of IGS stations, the robust Kalman filtering (RKF) model was presented to determine the datum of multi-period monitoring network considering the velocity and weekly solution of IGS stations. The theory proposed was applied to monitoring mining subsidence in northern Anhui coal mine in China. According to the case study, the RKF model to establish monitoring datum is better than the prediction method and the weekly solution from IGS analysis centers (ACs), and the corresponding precision of deformation can reach up to millimeter level with 4 h observation. The research provides an efficient and accurate approach for monitoring large-area mining subsidence.
基金Project(51174191)supported by the National Natural Science Foundation of ChinaProject(2013CB227904)supported by the National Basic Research Program of ChinaProject(2012QNB09)supported by Fundamental Research Funds for the Central Universities,China
文摘The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.
基金Supported by the Scientific Research Foundation for Young Faulty of Nanjing University of Aeronautics & Astronautics(S0670-082)~~
文摘As for the supply chain consisting of a manufacturer and multiple competing retailers, the disruption management decision is considered for the demand disruption that both the investment sensitivity coefficient and the investment-elasticity are changed simultaneously. Meanwhile, the corresponding solutions are given for different cases of the disruption, and the characteristics of the solutions are analyzed. The production plan is proved to he robustness under certain conditions, and the production plan of the coordination strategy is investigated for the disruption with appropriate contractual arrangement, i. e. , a subside rate schedule. Mutual restraints exist between the changed investment sensitivity coefficient and the investment-elasticity when the coordination mecha- nism is used. And the more the number of the retailers in the system, the more the subside provided by the suppler on the coordinaton strategy.
文摘Tancbeng-Lujiang fault system is one of the largest strike-slip fault systems in eastern Asia.It extends southward to Beibuwan Bay to the west of Hainan Island and northward through Lujiang of Anhui Province, Tancheng of Shandong Province and Luobei of Heilongjiang Province in China to the territory of Russia. Its formation is related to the subduction of Kula-Pacific plate to the Asian continent. It is oriented approximately parallel to the eastern edge of Asia. It is dominated by the sinistral translation from Jurassic to Eocene and then by dextrose strike-slip. It has the following characters: (1)clear linear character; (2)sharp dip angle, usually changing between normal and reverse faults; (3)showing braided structure on the plan and flower structure in section;(4)alternated by uplifts and sags along the fault belt; (5)many stages of the eruptions of alkaline to calc-alkaline basalt magma along the fault belt; and (6) frequent activities of earthquakes along the fault belt. Its control over the oil-gas distribution is shown by the following racts: (1) the formation of many oil-bearing fault depressions; (2) the increase of the basin area it has passed through, thus increasing the basin's subsiding quantity and the oil reservoirs; and (3)the formation of many kinds of oil-gas trap structures.