期刊文献+
共找到474篇文章
< 1 2 24 >
每页显示 20 50 100
Analysis of driving factors for land subsidence in typical cities of the North China Plain based on geodetector technology
1
作者 Zhao-huan Huang Zhi-bin Huo +3 位作者 Wei Wang Ji-xiang Zhu Chun-hao Zhang Rui-peng Xi 《Journal of Groundwater Science and Engineering》 2025年第1期74-89,共16页
The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region... The North China Plain is vital hub for agricultural production and urban development.However,decades of excessive groundwater extraction have resulted on significant land subsidence,posing severe threats to the region's socio-economic stability and sustainable development.The relationship between land deformation and groundwater storage Anomalies in this region remains insufficiently understood,and the driving factors behind land subsidence require further exploration.This study employs downscaled GRACE and SBAS InSAR technologies to monitor and analyze land subsidence and groundwater storage Anoma-lies in four representative cities of the North China Plain:Beijing,Tianjin,Cangzhou,and Hengshui.Using geodetector methods,the study investigates the driving factors of land subsidence,incorporating both natu-ral environmental and human activity factors.The results indicate that:(1)Groundwater storage in the North China Plain generally exhibited an overall declining trend from 2002 to 2022,with the rate of decrease weakening from southwest to northeast,showing a clear spatial clustering pattern.(2)While,land subsidence rates in the main urban areas of each city were relatively low,severe subsidence persisted in the surrounding suburban and rural areas.(3)The temporal trends of land subsidence were consistent with changes in groundwater storage across all cities.(4)Groundwater storage Anomalies emerged as the most significant factor influencing the spatial distribution of land subsidence,with a q-value of 0.387,followed by factors such as DEM,evapotranspiration,and rainfall.Seasonal characteristics were evident in land deformation corresponding to groundwater storage Anomalies:During the spring and summer irrigation periods,land subsidence occurred due to groundwater depletion,while in autumn and winter,the surface uplifted with increased groundwater storage.In Cangzhou and Hengshui,excessive deep groundwater extraction caused a lagged response in land subsidence relative to groundwater storage Anomalies.Further-more,interaction among various factors significantly amplified their influence on land subsidence.The interaction between groundwater storage Anomalies and rainfall had the strongest combined effect,under-scoring its critical role in shaping land subsidence in the study area.The findings offer valuable insights for the scientific prevention and management of land subsidence in the North China Plain. 展开更多
关键词 Land subsidence INSAR groundwater storage Anomalies Geodetector GRACE
在线阅读 下载PDF
Impact of urban construction land gradient expansion on land subsidence in mountainous cities
2
作者 JIAO Weijie ZHOU Liang +3 位作者 WANG Shaohua GAO Hong HUANG Chunlin YUAN Heli 《Journal of Mountain Science》 2025年第7期2586-2604,共19页
The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.Thi... The expansion of construction land on slopes in mountainous cities like Lanzhou has addressed the shortage of flat land but compromised slope stability,leading to uneven land subsidence and risks to infrastructure.This study assessed the land subsidence before and after urban expansion in five areas of Lanzhou by using slope spectrum construction method and gradient expansion intensity measurement that integrated with SBAS-InSAR technology.The results show that construction land on slopes over 20°increased significantly,accounting for 16%of new construction land.The average slope spectrum index was 4.02,with the upper slope limit rising by 8.2°.The land subsidence rate threshold increased by 10 mm/a,and the proportion of pixels experiencing subsidence greater than 5 mm/year rose from 3.63%to 5.24%.Increased construction intensity on slopes caused higher and faster subsidence,which diminished with greater distance from the expansion areas.Areas with slopes between 10°and 25°saw the greatest acceleration in subsidence.Geological composition,building density,groundwater exploitation,and cut-and-fill thickness collectively influence land subsidence rates.This study provides a scientific basis for mitigating geological disaster risks and promoting safe urban development in mountainous cities. 展开更多
关键词 Gradient expansion Land subsidence SBAS-InSAR Land creation Urban expansion
原文传递
Integrated spatiotemporal data mining and DInSAR for improved understanding of subsidence related to groundwater depletion impacts
3
作者 Jalal KARAMI Fatemeh BABAEE +1 位作者 Pouya MAHMOUDNIA Mohammad SHARIFI KIA 《Journal of Geographical Sciences》 2025年第3期598-618,共21页
Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental chall... Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region. 展开更多
关键词 spatiotemporal wavelet-PCA analysis SUBSIDENCE INTERFEROMETRY piezometric data Malayer Plain
原文传递
Dynamically and economically updating the National Elevation Datum with the assistance of InSAR:A case study in North China Plain
4
作者 Wenke Zheng Zhaofeng Du +2 位作者 Xiaomin Zhou Cong Yue Shengtao Qin 《Geodesy and Geodynamics》 2025年第3期310-320,共11页
Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assist... Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study. 展开更多
关键词 INSAR Land subsidence National Elevation Datum Dynamic update Regional remeasurement
原文传递
Mining Subsidence Based on Integrated SBAS-InSAR and Unmanned Aerial Vehicles Technology
5
作者 CHEN Xuewei CHEN Jianping +2 位作者 WANG Genhou ZHANG Qian ZHENG Yanwei 《Journal of Ocean University of China》 2025年第1期113-129,共17页
The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning ... The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction. 展开更多
关键词 SBAS-InSAR two-dimensional deformation solution UAV photogrammetry data fusion subsidence prediction
在线阅读 下载PDF
Morphometric analyses of a deltaic strandplain inferred from LiDAR data and old maps:A contribution to the coastal risk mapping of the Tiber Delta(Italy)
6
作者 SARRAU Justine SALOMON Ferréol 《Journal of Geographical Sciences》 2025年第10期2229-2247,共19页
Morphologies of deltaic strandplains are the result of multiple sedimentary dynamics interacting with climate,neotectonic and anthropic impacts.They record long-term evolution of coastal areas but also reveal past and... Morphologies of deltaic strandplains are the result of multiple sedimentary dynamics interacting with climate,neotectonic and anthropic impacts.They record long-term evolution of coastal areas but also reveal past and present hazards that can be essential to better predict risks in urbanised deltas.This paper aims to identify the effect of a long-term evolution of the prograded plain of the Tiber Delta in using current ground surface variations and geohistorical data.This study applies GIS(Geographic Information System)tools to LiDAR(Light Detection and Ranging)-derived DEM(Digital Elevation Model)data combined with stratigraphical data,aerial photography interpretation and old maps.The main outcome shows areas of subsidence are primarily located in the central part of the Tiber Delta.Lower heights at the river mouth are due to subsidence and specific lower morphologies associated with fast progradation phases,while similar low heights just north in the area of the international airport of Rome are due to subsidence alone.Subsidence under the airport is associated with the compaction of the silty clay infill of the Late Pleistocene Tiber Valley mostly deposited during the Holocene transgressive period.Only observed in the airport area,the presence of washover fans and the large extent of paleolagoons reveal the kind of risks that are increased by this subsidence.This study demonstrates that the densely urbanised central part of the Tiber Delta faces higher risks of marine submersion and coastal flooding considering ongoing relative sea level change.It also contributes to show the importance to better characterise past coastal morphologies to identify areas prone to subsidence. 展开更多
关键词 river delta chrono-morphometry LiDAR SUBSIDENCE relative sea level change
原文传递
Effect of alluvial thickness on the surface subsidence characteristics at deeply buried mining area with thin bedrock: A case study
7
作者 WU Shanxi WEI Weijie +3 位作者 LI Lianghui CHENG Boyuan ZHANG Shenyi XIE Huashun 《Journal of Mountain Science》 2025年第4期1499-1515,共17页
Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No.... Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No.2 coal mine in Xinxiang City,Henan Province,China,this study employs a comprehensive research methodology,integrating field investigations,numerical simulations,and theoretical analyses,to explore the surface subsidence features at deeply buried mining areas with thin bedrock and thick alluvial layers,to reveal the effect of alluvial thickness on the surface subsidence characteristics.The findings indicate that the surface subsidence areas span 4.2 km2 with an advanced influence distance of 540 m.The rate of surface subsidence primarily depends on the panel's position and its advancing rate.Moreover,the thickness of the alluvial layer amplifies both the extent and magnitude of surface deformation.The displacement of overlying rock primarily exhibits a two-stage progression:the thin bedrock control stage and the alluvial control stage.In the thin bedrock control stage,surface subsidence initiates with relatively low subsidence values and amplitudes.Subsequently,in the alluvial control stage,surface subsidence accelerates,leading to a rapid increase in both subsidence values and amplitudes.These characteristics of rock formation displacement result in distinct phases of surface subsidence.Furthermore,the paper addresses the utilization of surface subsidence areas and proposes a method for calculating reservoir storage capacity in these areas.According to calculations,the storage capacity amounts to 1.05e7 m^(3).The research findings provide valuable insights into the surface subsidence laws in regions with similar geological conditions and practical implications for the management and utilization of subsided areas. 展开更多
关键词 Underground mining Surface subsidence Thick alluvial layer Thin bedrock Surface reservoir
原文传递
Controllable Subsidence and Reasonable Planning May Mitigate Geo-Hazards in Large-Scale Land Creation Area
8
作者 Haijun Qiu Yingdong Wei Wen Liu 《Journal of Earth Science》 2025年第2期806-811,共6页
0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly ... 0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land. 展开更多
关键词 expand construction land increase land resources geo hazards largescale land infilling excavation projects figure reasonable planning large scale land creation area expanding ground space controllable subsidence
原文传递
Two stages of subsidence and its formation mechanisms in Mid-Late Triassic Ordos Basin,NW China 被引量:3
9
作者 DENG Xiuqin CHU Meijuan +2 位作者 WANG Long CHEN Xiu WANG Yanxin 《Petroleum Exploration and Development》 SCIE 2024年第3期576-588,共13页
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import... Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic. 展开更多
关键词 Ordos Basin Chang 10 Member Chang 7 Member subsidence center depocenter subsidence mechanism Qinling orogenic belt Indosinian movement
在线阅读 下载PDF
A semi-infinite beam theoretical model on predicting rock slope subsidence induced by underground mining 被引量:3
10
作者 LIU Xinrong WANG Nanyun +2 位作者 ZHONG Zuliang DU Libing LIANG Erwei 《Journal of Mountain Science》 SCIE CSCD 2024年第2期633-647,共15页
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key... When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems. 展开更多
关键词 Key strata Mining rock slope Winkler foundation Euler-Bernoulli beam Subsidence prediction
原文传递
InSAR-derived surface deformation characteristics and mining subsidence parameters in mountain coal mines 被引量:1
11
作者 JIANG Xiaowei SHI Wenbing +2 位作者 LIANG Feng GUI Jingjing LI Jiawei 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3139-3156,共18页
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S... Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts. 展开更多
关键词 Time-series InSAR Surface deformation Subsurface mining Mining subsidence
原文传递
Thermo-hydro-mechanical (THM) coupled simulation of the land subsidence due to aquifer thermal energy storage (ATES) system in soft soils 被引量:1
12
作者 Yang Wang Fengshou Zhang Fang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1952-1966,共15页
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o... Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils. 展开更多
关键词 Aquifer thermal energy storage(ATES) Land subsidence TOUGH-FLAC3D Thermo-elastoplastic constitutive model
在线阅读 下载PDF
Identified the hydrochemical and the sulfur cycle process in subsidence area of Pingyu mining area using multi-isotopes combined with hydrochemistry methods 被引量:2
13
作者 Hui-Meng Su Fa-Wang Zhang +4 位作者 Jing-Yu Hu Jin-Feng Lei Wei Zuo Bo Yang Yu-Hua Liu 《Journal of Groundwater Science and Engineering》 2024年第1期62-77,共16页
Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the ch... Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process. 展开更多
关键词 PCA Ion ratio Water chemistry Sulfide minerals Multi-isotopes Subsidence area of mining area
在线阅读 下载PDF
Using machine learning and satellite data from multiple sources to analyze mining,water management,and preservation of cultural heritage 被引量:1
14
作者 Joaquim J.Sousa Jiahui Lin +11 位作者 Qun Wang Guang Liu Jinghui Fan Shibiao Bai Hongli Zhao Hongyu Pan Wenjing Wei Vanessa Rittlinger Peter Mayrhofer Ruth Sonnenschein Stefan Steger Luís Paulo Reis 《Geo-Spatial Information Science》 CSCD 2024年第3期552-571,共20页
Remote sensing,particularly satellite-based,can play a valuable role in monitoring areas prone to geohazards.The high spatial and temporal coverage provided by satellite data can be used to reconstruct past events and... Remote sensing,particularly satellite-based,can play a valuable role in monitoring areas prone to geohazards.The high spatial and temporal coverage provided by satellite data can be used to reconstruct past events and continuously monitor sensitive areas for potential hazards.This paper presents a range of techniques and methods that were applied for in-depth analysis and utilization of Earth observation data,with a particular emphasis on:(1)detecting mining subsidence,where a novel approach is proposed by combining an improved U-Net model and Interferometry Synthetic Aperture Radar(InSAR)technology.The results showed that the Efficient Channel Attention(ECA)U-Net model performed better than the U-Net(baseline)model in terms of Mean Intersection over Union(MIoU)and Intersection over Union(IoU)indicators;(2)monitoring water conservancy and hydropower engineering.The Xiaolangdi multipurpose dam complex was monitored using Small BAsline Subsets(SBAS)InSAR method on Sentinel-1 time series data and four small regions with high deformation rates were identified on the slope of the reservoir bank on the north side.The dam body also showed obvious deformation with a velocity exceeding 60 mm/a;(3)the evaluation of the potential of InSAR results to integrate monitoring and warning systems for valuable heritage and architectural preservation.The overall outcome of these methods showed that the use of Artificial Intelligence(AI)techniques in combination with InSAR data leads to more efficient analysis and interpretation,resulting in improved accuracy and prompt identification of potential hazards;and(4)finally,this study also presents a method for detecting landslides in mountainous regions,using optical imagery.The new temporal landslide detection method is evaluated over a 7-year analysis period and unlike conventional bi-temporal change detection methods,this approach does not depend on any prior-knowledge and can potentially detect landslides over extended periods of time such as decades. 展开更多
关键词 Landslide detection InSAR time series analysis machine learning heritage preservation mining subsidence water conservancy infrastructures
原文传递
Residual subsidence time series model in mountain area caused by underground mining based on GNSS online monitoring
15
作者 Xugang Lian Lifan Shi +2 位作者 Weiyu Kong Yu Han Haodi Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期173-186,共14页
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining... The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining. 展开更多
关键词 Underground mining in mountain area Residual subsidence GNSS online monitoring Mathematical model Subsidence prediction
在线阅读 下载PDF
Evolution mechanism and treatment timing of penetrating fissures
16
作者 ZHANG Yanjun YAN Yueguan +1 位作者 ZHU Yuanhao DAI Huayang 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3453-3473,共21页
The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and ... The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas. 展开更多
关键词 Mining subsidence Ecological restoration FISSURES Evolution mechanism Prediction model Treatment timing
原文传递
Using neural network modeling to improve the detection accuracy of land subsidence due to groundwater withdrawal
17
作者 Ali M.RAJABI Ali EDALAT +1 位作者 Yasaman ABOLGHASEMI Mahdi KHODAPARAST 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2320-2333,共14页
Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that a... Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics. 展开更多
关键词 DINSAR Land subsidence Groundwater withdrawal Aliabad plain Artificial neural network
原文传递
Paleoseismological trenching and seismic hazard assessment of the Bozkurt Segment of the Maymundağı Fault, Acıgöl Graben, SW Türkiye
18
作者 Ali KAYA 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3789-3813,共25页
The Acıgöl Graben in SW Turkey,ca.50-55 km in length and 11-15 km in width,formed during the Miocene to Quaternary periods.This graben is bounded by active normal faults of MaymundağıFault(MF)to the northwest and... The Acıgöl Graben in SW Turkey,ca.50-55 km in length and 11-15 km in width,formed during the Miocene to Quaternary periods.This graben is bounded by active normal faults of MaymundağıFault(MF)to the northwest and the GemişFault Zone(GFZ)to the southeast that have triggered significant earthquakes,causing considerable damage.This study focuses on the Bozkurt segment of the MF,which caused a damaging earthquake(Mw 6.0)in 2019 and another significant earthquake in 1886 during historical times.A paleoseismological trench survey along the Bozkurt segment revealed at least two faulting events,with the last event producing a vertical displacement of 0.25 m.The Optical Stimulated Luminescence(OSL)dating indicates that the last earthquake occurred 3.13±0.33 ka BP,while the penultimate earthquake occurred 4.0±0.72 ka BP.These dates correspond to a long-term slip rate of approximately 0.36±0.11 mm/a and a mean recurrence interval of 2.08 ka,short-term slip rate 0.78±0.16 mm/a and recurrence interval of 0.96 ka,and compatible with the mean sedimentation rate of 0.26 mm/a,calculated from drill logs in Acıgöl basin-fill.Considering the 6 km length of the Bozkurt segment and its vertical displacement of 0.25 m in the last event,this segment has the potential to generate earthquakes ranging from 5.6 to 5.9 Mw.Long-term slip rates derived from geomorphological data are 0.56 mm/year to the north and 0.64 mm/a to the south of the graben,indicating higher subsidence on the southern margin.These rates are in accordance with the slip rates calculated from the paleoseismological trench survey and sedimentation rate from the drill-log.These indications show that the Bozkurt segment is an active Holocene fault with relatively long recurrence intervals and low-slip rate.Consequently,the paleoseismological studies in combination with geomorphological data are important tool to assess seismic hazards and to define the characteristics of individual fault segments. 展开更多
关键词 PALEOSEISMOLOGY Fault slip-rates SUBSIDENCE Bozkurt earthquake OSL dating Acıgöl Graben
原文传递
Risk assessment of coastal flooding disaster by storm surge based on Elevation-Area method and hydrodynamic models:Taking Bohai Bay as an example
19
作者 Fu Wang Xue-zheng Liu +3 位作者 Yong Li Heng Yu Ming-zheng Wen Yun-zhuang Hu 《China Geology》 CAS CSCD 2024年第3期494-504,共11页
The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coast... The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge. 展开更多
关键词 Storm surge ROMS Elevation-Area method Numerical simulation Land subsidence Flooding disaster Sea level rise Marine geological survey engineering Geological disaster survey engineering Bohai Bay
在线阅读 下载PDF
Mechanical responses of underground carriageway structures due to construction of metro tunnels beneath the existing structure:A case study
20
作者 Xin Han Fei Ye +3 位作者 Xingbo Han Chao Ren Jing Song Ruliang Zhao 《Deep Underground Science and Engineering》 2024年第2期231-246,共16页
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str... To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues. 展开更多
关键词 metro tunnel numerical simulation structural deformation surface subsidence underground carriageway structure
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部