期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Subsequent Commutation Failure Suppression Considering Negative-sequence Voltage Caused by Symmetrical Fault at AC Side of Inverter
1
作者 Shenghu Li Yikai Li 《Journal of Modern Power Systems and Clean Energy》 2025年第2期720-731,共12页
The negative-sequence voltage is often caused by the asymmetrical fault in the AC system,as well as the harmonics after the symmetrical fault at the AC side of inverter in line commutated converter based high-voltage ... The negative-sequence voltage is often caused by the asymmetrical fault in the AC system,as well as the harmonics after the symmetrical fault at the AC side of inverter in line commutated converter based high-voltage DC(LCC-HVDC).The negative-sequence voltage affects the phase-locked loop(PLL)and the inverter control,thus the inverter is vulnerable to the subsequent commutation failure(SCF).In this paper,the analytical expression of the negative-sequence voltage resulting from the symmetrical fault with the commutation voltage is derived using the switching function and Fourier decomposition.The analytical expressions of the outputs of the PLL and inverter control with respect to time are derived to quantify the contribution of the negative-sequence voltage to the SCF.To deal with the AC component of the input signals in the PLL and the inverter control due to the negative-sequence voltage,the existing proportional-integral controls of the PLL,constant current control,and constant extinction angle control are replaced by the linear active disturbance rejection control against the SCF.Simulation results verify the contributing factors to the SCF.The proposed control reduces the risk of SCF and improves the recovery speed of the system under different fault conditions. 展开更多
关键词 Line commutated converter high-voltage direct current subsequent commutation failure negative-sequence voltage inverter control phase-locked loop(PLL) linear active disturbance rejection control(LADRC).
原文传递
An improved prediction method of subsequent commutation failure of an LCC-HVDC considering sequential control response 被引量:5
2
作者 Jinxin Ouyang Xinyu Pan +3 位作者 Junjun Ye Chao Xiao Yanbo Diao Qingwu Zhang 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第3期173-183,共11页
Subsequent commutation failure(SCF)can be easily generated during the first commutation failure(CF)recovery process in a line-commutated converter-based high voltage direct-current system.SCF poses a significant threa... Subsequent commutation failure(SCF)can be easily generated during the first commutation failure(CF)recovery process in a line-commutated converter-based high voltage direct-current system.SCF poses a significant threat to the safe and stable operation of power systems,and accurate prediction of CF is thus important.However,SCF is affected by the operating characteristics of the main circuit and the coupling effects of sequential control response in the inverter station.These are difficult to predict accurately.In this paper,a new SCF prediction method considering the control response is proposed based on the physical principle of SCF.The time sequence and switching conditions of the controllers at different stages of the first CF recovery process are described,and the corresponding equations of commutation voltage affected by different controllers are derived.The calculation method of the SCF threshold voltage is proposed,and the prediction method is established.Simulations show that the proposed method can predict SCF accurately and provide useful tools to suppress SCF. 展开更多
关键词 Line-commutated converter based high-voltage direct-current(LCC-HVDC) subsequent commutation failure(SCF) Converter station PREDICTION
在线阅读 下载PDF
DC Current Order Optimization Based Strategy for Recovery Performance Improvement of LCC-HVDC Transmission Systems 被引量:5
3
作者 Renlong Zhu Xiaoping Zhou +3 位作者 Shuchen Luo Lerong Hong Hanhang Yin Yifeng Liu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期1020-1026,共7页
For the safe and fast recovery of line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems after faults,a DC current order optimization based strategy is proposed.Considering the const... For the safe and fast recovery of line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems after faults,a DC current order optimization based strategy is proposed.Considering the constraint of electric and control quantities,the DC current order with the maximum active power transfer is calculated by Thevenin equivalent parameters(TEPs)and quasi-state equations of LCC-HVDC transmission systems.Meanwhile,to mitigate the subsequent commutation failures(SCFs)that may come with the fault recovery process,the maximum DC current order that avoids SCFs is calculated through imaginary commutation process.Finally,the minimum value of the two DC current orders is sent to the control system.Simulation results based on PSCAD/EMTDC show that the proposed strategy mitigates SCFs effectively and exhibits good performance in recovery. 展开更多
关键词 Line commutated converter(LCC) high-voltage direct current(HVDC) DC current order calculation subsequent commutation failure(SCF) RECOVERY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部