There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heati...There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heating at elevated temperatures,yet this great challenge remains.In this study,a strategy is reported to improve the thermal stability of subnanometric Pt cluster by hydrothermal deposition method.Based on this method,zirconium(Zr) was precisely doped on surface of Ce_(0.95)Zr_(0.05)O_(2) by accurately controlling Pt subnanometric cluster size.The surface doping of Zr is favorable for forming the Zr-O-Ce site and activating surface lattice oxygen atoms,which results in strong electronic interactions to stabilize the Pt subnanometric cluster.After high-temperature aging treatment at 1000℃/4 h,the single atom Pt supported on CeO_(2) is aggregated into larger sized(>3 nm) nanoparticle.In contrast,the single atom Pt supported on Ce_(0.95)Zr_(0.0)5O_(2) displays less agglomeration into subnanometric cluster with size of(1.4±0.3) nm.Moreover,the CO oxide catalytic performance of Ce_(0.95)Zr_(0.0)5O_(2)-Pt is 26% and 31%higher than that of CeO_(2)-Pt and commercial Al_(2)O_(3)-Pt catalysts,respectively.The experimental and density functional theory(DFT) calculations indicate that the Zr-O-Ce site and Pt subnanometric cluster interface have more defect sites and active oxygen species than CeO_(2)-Pt interface,which activate the Mars van Krevelen(MvK) mechanism,facilitating the catalytic performance.展开更多
Long-chain alkanes are abundant feedstocks supplied by natural resources and chemical industry. Specially, normal long-chain alkanes are primary products from Fischer-Tropsch synthesis(FTS) process, which is an import...Long-chain alkanes are abundant feedstocks supplied by natural resources and chemical industry. Specially, normal long-chain alkanes are primary products from Fischer-Tropsch synthesis(FTS) process, which is an important route for the utilization of coal in China. Facing a shift of energy nexus towards sustainable society, the conversion of long-chain alkanes derived from coal into value-added products(such as alkenes and oxygenates) is of great importance for securing China’s energy supply and the role transition of the commercial FTS plants from fuel makers to chemical suppliers. Among the potential transformation routes,the direct dehydrogenation of long-chain alkanes into alkenes is an attractive and practical route, due to the broad applications of long-chain alkenes(especially the linear α-olefins). In this review, we will summary the key insights obtained from the literature on the dehydrogenation of light alkanes based on supported metal catalysts and the dehydrogenation of alkanes with homogeneous molecular catalysts and then discuss how to translate these lessons into the development of efficient catalysts and processes for the dehydrogenation of long-chain alkanes into long-chain alkenes.展开更多
基金supported by National Natural Science Foundation of China (52204376)Youth Foundation of Hebei Province (E2022103007)+1 种基金Open Project of Yunnan Precious Metals Laboratory Co.(YPML-20240502059)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)。
文摘There has been a continuous effort to improve the thermal stability of subnanometric platinum(Pt)cluster(<2 nm) catalyst because Pt cluster on CeO_(2) support can be mobile and aggregated into nanoparticle on heating at elevated temperatures,yet this great challenge remains.In this study,a strategy is reported to improve the thermal stability of subnanometric Pt cluster by hydrothermal deposition method.Based on this method,zirconium(Zr) was precisely doped on surface of Ce_(0.95)Zr_(0.05)O_(2) by accurately controlling Pt subnanometric cluster size.The surface doping of Zr is favorable for forming the Zr-O-Ce site and activating surface lattice oxygen atoms,which results in strong electronic interactions to stabilize the Pt subnanometric cluster.After high-temperature aging treatment at 1000℃/4 h,the single atom Pt supported on CeO_(2) is aggregated into larger sized(>3 nm) nanoparticle.In contrast,the single atom Pt supported on Ce_(0.95)Zr_(0.0)5O_(2) displays less agglomeration into subnanometric cluster with size of(1.4±0.3) nm.Moreover,the CO oxide catalytic performance of Ce_(0.95)Zr_(0.0)5O_(2)-Pt is 26% and 31%higher than that of CeO_(2)-Pt and commercial Al_(2)O_(3)-Pt catalysts,respectively.The experimental and density functional theory(DFT) calculations indicate that the Zr-O-Ce site and Pt subnanometric cluster interface have more defect sites and active oxygen species than CeO_(2)-Pt interface,which activate the Mars van Krevelen(MvK) mechanism,facilitating the catalytic performance.
基金supported by Tsinghua University(Initiative Scientific Research Program 20211080079)the National Natural Science Foundation of China(21972161,22172186)+7 种基金Chinese Academy of Sciences(CAS)Pioneer Talents Program(2018-095)Shanxi Talent Program(2019SBRJH01)Autonomous Research Project of State Key Laboratory of Coal Conversion(SKLCC)(2020BWZ006,2021BWZ007)Institute of Coal Chemistry(ICC)Innovation Fund(SCJJ-2020-02)Inner Mengolia Science&Technology Project Plan(2021GG0311)Major science and technology project of Ordos(2022EEDSKJZDZX001)Start-Up Grant of Institute of Coal Chemistry(2020SC001)Synfuels China Co.,Ltd.
文摘Long-chain alkanes are abundant feedstocks supplied by natural resources and chemical industry. Specially, normal long-chain alkanes are primary products from Fischer-Tropsch synthesis(FTS) process, which is an important route for the utilization of coal in China. Facing a shift of energy nexus towards sustainable society, the conversion of long-chain alkanes derived from coal into value-added products(such as alkenes and oxygenates) is of great importance for securing China’s energy supply and the role transition of the commercial FTS plants from fuel makers to chemical suppliers. Among the potential transformation routes,the direct dehydrogenation of long-chain alkanes into alkenes is an attractive and practical route, due to the broad applications of long-chain alkenes(especially the linear α-olefins). In this review, we will summary the key insights obtained from the literature on the dehydrogenation of light alkanes based on supported metal catalysts and the dehydrogenation of alkanes with homogeneous molecular catalysts and then discuss how to translate these lessons into the development of efficient catalysts and processes for the dehydrogenation of long-chain alkanes into long-chain alkenes.