The Internet of Vehicles(IoV)operates in highly dynamic and open network environments and faces serious challenges in secure and real-time authentication and consensus mechanisms.Existing methods often suffer from com...The Internet of Vehicles(IoV)operates in highly dynamic and open network environments and faces serious challenges in secure and real-time authentication and consensus mechanisms.Existing methods often suffer from complex certificate management,inefficient consensus protocols,and poor resilience in high-frequency communication,resulting in high latency,poor scalability,and unstable network performance.To address these issues,this paper proposes a secure and efficient distributed authentication scheme for IoV with reputation-driven consensus and SM9.First,this paper proposes a decentralized authentication architecture that utilizes the certificate-free feature of SM9,enabling lightweight authentication and key negotiation,thereby reducing the complexity of key management.To ensure the traceability and global consistency of authentication data,this scheme also integrates blockchain technology,applying its inherent invariance.Then,this paper introduces a reputation-driven dynamic node grouping mechanism that transparently evaluates and groups’node behavior using smart contracts to enhance network stability.Furthermore,a new RBSFT(Reputation-Based SM9 Friendly-Tolerant)consensus mechanism is proposed for the first time to enhance consensus efficiency by optimizing the PBFT algorithm.RBSFT aims to write authentication information into the blockchain ledger to achieve multi-level optimization of trust management and decision-making efficiency,thereby significantly improving the responsiveness and robustness in high-frequency IoV scenarios.Experimental results show that it excels in authentication,communication efficiency,and computational cost control,making it a feasible solution for achieving IoV security and real-time performance.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
针对车载自组织网络(Vehicular Ad Hoc Network,VANET)中的隐私保护问题,提出一种基于SM9算法的聚合签名方案。该方案以SM9签名算法为基础,结合聚合签名技术提高认证效率,利用雾计算降低时延,实现对数据的实时处理需求,同时满足条件隐...针对车载自组织网络(Vehicular Ad Hoc Network,VANET)中的隐私保护问题,提出一种基于SM9算法的聚合签名方案。该方案以SM9签名算法为基础,结合聚合签名技术提高认证效率,利用雾计算降低时延,实现对数据的实时处理需求,同时满足条件隐私保护、匿名性和不可链接性等安全需求。最后,通过假名机制保护车辆隐私,确保当车辆发生非法行为时能够快速追踪其真实身份。在随机谕言机模型下,证明了该方案的不可伪造性。性能分析结果表明,与现有方案相比,所提方案有效降低了聚合验证阶段的计算开销,适用于资源受限的车联网环境。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61762071,Grant No.61163025).
文摘The Internet of Vehicles(IoV)operates in highly dynamic and open network environments and faces serious challenges in secure and real-time authentication and consensus mechanisms.Existing methods often suffer from complex certificate management,inefficient consensus protocols,and poor resilience in high-frequency communication,resulting in high latency,poor scalability,and unstable network performance.To address these issues,this paper proposes a secure and efficient distributed authentication scheme for IoV with reputation-driven consensus and SM9.First,this paper proposes a decentralized authentication architecture that utilizes the certificate-free feature of SM9,enabling lightweight authentication and key negotiation,thereby reducing the complexity of key management.To ensure the traceability and global consistency of authentication data,this scheme also integrates blockchain technology,applying its inherent invariance.Then,this paper introduces a reputation-driven dynamic node grouping mechanism that transparently evaluates and groups’node behavior using smart contracts to enhance network stability.Furthermore,a new RBSFT(Reputation-Based SM9 Friendly-Tolerant)consensus mechanism is proposed for the first time to enhance consensus efficiency by optimizing the PBFT algorithm.RBSFT aims to write authentication information into the blockchain ledger to achieve multi-level optimization of trust management and decision-making efficiency,thereby significantly improving the responsiveness and robustness in high-frequency IoV scenarios.Experimental results show that it excels in authentication,communication efficiency,and computational cost control,making it a feasible solution for achieving IoV security and real-time performance.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
文摘针对车载自组织网络(Vehicular Ad Hoc Network,VANET)中的隐私保护问题,提出一种基于SM9算法的聚合签名方案。该方案以SM9签名算法为基础,结合聚合签名技术提高认证效率,利用雾计算降低时延,实现对数据的实时处理需求,同时满足条件隐私保护、匿名性和不可链接性等安全需求。最后,通过假名机制保护车辆隐私,确保当车辆发生非法行为时能够快速追踪其真实身份。在随机谕言机模型下,证明了该方案的不可伪造性。性能分析结果表明,与现有方案相比,所提方案有效降低了聚合验证阶段的计算开销,适用于资源受限的车联网环境。