期刊文献+
共找到11,659篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress of intelligent testing technology and evaluation methods for subgrade engineering 被引量:1
1
作者 Guojun Cai Hongliang Tian +2 位作者 Lulu Liu Xiaoyan Liu Songyu Liu 《Journal of Road Engineering》 2025年第2期164-183,共20页
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su... Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring. 展开更多
关键词 subgrade engineering Intelligent testing technology Technology evaluation Health management and maintenance
在线阅读 下载PDF
Effect of fine-grained wood biochar on the geotechnical and microstructural behaviour of expansive clay as pavement subgrade
2
作者 Mohammad Saberian Jiasheng Zhu +3 位作者 Rajeev Roychand Xi Sun Jie Li Chun-Qing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6648-6661,共14页
Biochar,a solid carbonaceous material produced by heating biomass in oxygen-free or low-oxygen conditions(pyrolysis),has been used in various applications,including wastewater treatment,carbon sequestration,and improv... Biochar,a solid carbonaceous material produced by heating biomass in oxygen-free or low-oxygen conditions(pyrolysis),has been used in various applications,including wastewater treatment,carbon sequestration,and improving soil fertility.However,very limited research has been performed to explore its feasibility to improve the expansive clay(EC)subgrade.In this study,fine-grained wood biochar derived from wood waste was used to stabilise and enhance the mechanical performance of the EC as road subgrade.A comprehensive series of geotechnical tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),repeated load triaxial(RLT),and swelling-shrinkage tests,were conducted to investigate the engineering properties of expansive clay mixed with different contents of the fine-grained biochar(FGB)(i.e.0,1%,2%,3%,and 4%by weight of dry soil).Furthermore,X-ray diffraction(XRD),X-ray fluorescence(XRF),X-ray micro-CT,and thermogravimetric analysis(TGA)analyses were performed to study the microchemical modification of the EC-FGB mixtures.The results showed that adding FGB reduced the swelling and shrinkage potential while enhancing the mechanical properties of the EC.The micro-level analysis also supported the enhancement of the geotechnical performance of the EC resulting from the incorporation of FGB.According to the test results,2%FGB was considered the optimum content,increasing UCS,CBR,and resilient modulus by 31.1%,24.1%,and 31.5%,respectively,and decreasing the swell-shrinkage index by 7%. 展开更多
关键词 Expansive clay Wood biochar Soil stabilisation Pavement subgrade
在线阅读 下载PDF
Salt rock filling in subgrade:a comprehensive review
3
作者 Liyang Wang Feng Chen +1 位作者 Pengcheng Wang Qianli Zhang 《Railway Sciences》 2025年第2期174-198,共25页
Purpose–Salt rock from salt lakes can serve as a cost-effective material for subgrade filling,as demonstrated in projects like the Qarhan Salt Lake section of the Qinghai-Tibet Railway and the Qarhan Salt Lake sectio... Purpose–Salt rock from salt lakes can serve as a cost-effective material for subgrade filling,as demonstrated in projects like the Qarhan Salt Lake section of the Qinghai-Tibet Railway and the Qarhan Salt Lake section of the G215 Highway.This state-of-the-art paper aims to summarize the engineering properties of salt rock filling and present the advances of its utilization.Design/methodology/approach–This paper collects and analyzes laboratory and field data of salt rock filling from previous studies to present a comprehensive analysis of the engineering properties and utilization of salt rock fillings.Findings–Salt rock primarily contains minerals such as halite and glauberite,which contribute to its unique phase-changing behavior under varying environmental conditions,impacting its mechanical properties.Salt rock filling shrinks when in contact with vapor or unsaturated brine and expands under cooling or evaporation.Its use is particularly recommended for arid regions,with specific restrictions depending on the structure type.This paper discusses suggested countermeasures to mitigate these issues,as well as key quality acceptance indices for salt rock filling compaction.Moisture content after air-drying is recommended as a crucial parameter for construction quality control.Originality/value–This review aims to support future research and engineering practices in salt rock subgrade applications. 展开更多
关键词 Salt rock subgrade filling Engineering properties WATERPROOFING Construction quality control
在线阅读 下载PDF
Analysis of Key Technologies for On-site Detection of Subgrade and Pavement of Municipal Roads
4
作者 Zijian Hu 《Journal of Architectural Research and Development》 2025年第6期90-97,共8页
On-site inspection of municipal road subgrade and pavement is of great significance for ensuring the quality,safety,and durability of urban road infrastructure.This paper analyzes its key technologies,introduces non-d... On-site inspection of municipal road subgrade and pavement is of great significance for ensuring the quality,safety,and durability of urban road infrastructure.This paper analyzes its key technologies,introduces non-destructive testing methods such as ground-penetrating radar and ultrasonic testing,elaborates on the multifaceted roles of inspection in engineering construction as well as relevant standards,explores site challenges,key technologies,and corresponding measures,and points out future research directions in intelligent sensing and predictive maintenance. 展开更多
关键词 Municipal roads subgrade and pavement inspection Key technologies
在线阅读 下载PDF
Numerical simulation 0n the influence of different median strip types in the separated highway subgrade cross section on the transport law of wind-sand flow
5
作者 ZHANG Jing LI Shengyu +1 位作者 SUN Yunlong XIA Tian 《Journal of Mountain Science》 2025年第5期1707-1722,共16页
To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements sti... To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition. 展开更多
关键词 Highway engineering Separated subgrade Median strip Numerical simulation Embankment wind-sand flow
原文传递
Study on static characteristics of a novel prestress-reinforced railway subgrade
6
作者 Junli Dong Fang Xu +3 位作者 Qishu Zhang Wuming Leng Yafeng Li Qi Yang 《Railway Engineering Science》 2025年第1期108-126,共19页
Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring... Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades. 展开更多
关键词 Prestressed subgrade Static characteristic Reinforcement effect Reinforcement mode SETTLEMENT Numerical simulation
在线阅读 下载PDF
Gray relational analysis and SBOA-BP for predicting settlement intervals of high-speed railway subgrade
7
作者 Quanpeng He Shaoyuan Li 《Railway Sciences》 2025年第2期199-212,共14页
Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway s... Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway subgrade settlement interval prediction method using the secretary bird optimization(SBOA)algorithm to optimize the BP neural network under the premise of gray relational analysis is proposed.Findings–Using the SBOA algorithm to optimize the BP neural network,the optimal weights and thresholds are obtained,and the best parameter prediction model is combined.The data were collected from the sensors deployed through the subgrade settlement monitoring system,and the gray relational analysis is used to verify that all four influencing factors had a great correlation to the subgrade settlement,and the collected data are verified using the model.Originality/value–The experimental results show that the SBOA-BP model has higher prediction accuracy than the BP model,and the SBOA-BP model has a wider range of prediction intervals for a given confidence level,which can provide higher guiding value for practical engineering applications. 展开更多
关键词 Gray relational analysis Secretary bird optimization algorithm Backpropagation neural network subgrade settlement Interval prediction
在线阅读 下载PDF
A novel digital design method for railway subgrade sections
8
作者 Qingbo Bai Xu Li +2 位作者 Zhenze Ma Xiaokang Li Long Liu 《Railway Sciences》 2025年第3期375-387,共13页
Purpose-Conventional high-speed railways(HSR)subgrade design methods remain constrained by platformdependent drafting systems,leading to data interaction hindrances and redundant design processes.This study strives to... Purpose-Conventional high-speed railways(HSR)subgrade design methods remain constrained by platformdependent drafting systems,leading to data interaction hindrances and redundant design processes.This study strives to develop a digital earthwork design methodology that enhances design while reducing collaborative expenses.Design/methodology/approach-A novel digital subgrade design approach,utilizing sophisticated analysis and modeling tools customized for different subgrade elements,is put forward in this study.The methodology incorporates the following essential steps:(1)the advancement of digital analysis and modeling techniques for diverse subgrade components,including surfaces,filling,slopes,retaining structures,and foundation treatments;(2)the formulation of a digital design principle repository incorporating various slope protection combinations;(3)the establishment of a comprehensive digital design framework and process for subgrade cross-sections;and(4)the development and implementation of an open-source digital design system.Findings-The proposed method liberates subgrade design from the constraints of conventional drawing platforms,elevating efficiency,intelligence,and flexibility.The open software architecture and code have achieved over 60%efficiency gains in design workflows during its deployment on three major high-speed rail projects:the Baotou-Yinchuan HSR corridor,Shenyang-Baihe HSR network,and Weifang-Yantai HSR system.Originality/value-This paper introduces an innovative digital design methodology that enables modular and parametric design for railway subgrade sections.The proposed approach provides a digital base for the intelligent design and maintenance of the next-generation high-speed railway. 展开更多
关键词 Software development Digital design subgrade High-speed railway Paper type Technical paper
在线阅读 下载PDF
Full-scale performances of the slab track subgrade filled with basalt fiber-reinforced foamed concrete
9
作者 Zhichao Huang Qian Su +3 位作者 Wenhui Zhao Zongyu Zhang Junjie Huang Sakdirat Kaewunruen 《Railway Engineering Science》 2025年第2期238-258,共21页
Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is requi... Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is required to better understand the performance of foamed concrete in subgrade applications.To this end,a series of tests—including uniaxial compres-sive and dynamic triaxial tests—were conducted to comprehensively examine the effects of basalt fiber reinforcement on the mechanical properties of foamed concrete with densities of 700 and 1000 kg/m3.Additionally,a full-scale model of the foamed concrete subgrade was established,and simulated loading was applied.The diffusion patterns of dynamic stress and dynamic acceleration within the subgrade were explored,leading to the development of experimental formulas to calculate the attenuation coefficients of these two parameters along the depth and width of the subgrade.Furthermore,the dynamic displacement and cumulative settlement were analyzed to evaluate the stability of the subgrade.These findings provide valuable insights for the design and construction of foamed concrete subgrades in high-speed rail systems.The outcomes are currently under consideration for inclusion in the code of practice for high-speed rail restoration. 展开更多
关键词 High-speed railway Slab track subgrade Basalt fiber-reinforced foamed concrete Model testing Dynamic performances
在线阅读 下载PDF
Research on risk identification of railway subgrade deformation based on Bayesian and ICA theories
10
作者 Yi Liu Fengyan Yang +3 位作者 Hu Wang Xuanqi Wang Chengwen Wu Hongsheng Yu 《Railway Sciences》 2025年第6期711-728,共18页
Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional h... Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional hidden dangers.Design/methodology/approach–The paper proposes a regional systematic risk identification method based on Bayesian and independent component analysis(ICA)theories.Firstly,the Gray Wolf Optimization(GWO)algorithm is used to partition each group of monitoring data in the hidden danger area,so that the data distribution characteristics within each sub-block are similar.Then,a distributed ICA early warning model is constructed to obtain prior knowledge such as control limits and statistics of the area under normal conditions.For the online evaluation process,the input data is partitioned following the above-mentioned procedure and the ICA statistics of each sub-block are calculated.The Bayesian method is applied to fuse online parameters with offline parameters,yielding statistics under a specific confidence interval.These statistics are then compared with the control limits–specifically,checking whether they exceed the pre-set confidence parameters–thus realizing the systematic risk identification of the hidden danger area.Findings–Through simulation experiments,the proposed method can integrate prior knowledge such as control limits and statistics to effectively determine the overall stability status of the area,thereby realizing the systematic risk identification of the hidden danger area.Originality/value–The proposed method leverages Bayesian theory to fuse online process parameters with offline parameters and further compares them with confidence parameters,thereby effectively enhancing the utilization efficiency of monitoring data and the robustness of the analytical model. 展开更多
关键词 Bayesian theory Grey Wolf Algorithm Independent component analysis Railway subgrade Deformation analysis
在线阅读 下载PDF
Advanced intelligent compaction strategy for subgrade soil considering heterogeneous database
11
作者 Xuefei Wang Jianhua Li +2 位作者 Jiale Li Jianmin Zhang Guowei Ma 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3265-3279,共15页
Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack ro... Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack robustness.This study proposes a subgrade compaction strategy that utilizes a heterogeneous dataset to estimate compaction quality across diverse scenarios while maintaining model accuracy.Field compaction tests are conducted in four distinct scenarios,considering various construction parameters.Compaction models are developed using several machine learning algorithms.The datasets are thoroughly assessed in terms of quality,diversity and similarity.The proposed model exhibits good performance in new scenarios by incorporating an additional 5%e8%of new data for retraining.The model's generalization capability is enhanced by conducting a limited number of field tests,which are labor-saving and time-efficient.The model's accuracy consistently improves across diverse scenarios and optimal algorithms.The proposed compaction strategy adopts a physics-and-data dual-driven approach,aimed at practical engineering applications and guiding the compaction procedure. 展开更多
关键词 Intelligent compaction subgrade construction Machine learning algorithms Heterogeneous scenarios Quality evaluation Training strategy
在线阅读 下载PDF
Mechanical behavior of train-slab track coupled system under subgrade settlement and earthquake excitation
12
作者 LOU Ping SHI Tao YANG T.Y. 《Journal of Central South University》 2025年第11期4417-4438,共22页
Subgrade settlement is a common issue in soil ground within earthquake-prone regions,posing a threat to the safe operation of train-slab track coupled system(TSCS)in high-speed railways(HSRs).This study aims to analyz... Subgrade settlement is a common issue in soil ground within earthquake-prone regions,posing a threat to the safe operation of train-slab track coupled system(TSCS)in high-speed railways(HSRs).This study aims to analyze the mechanical behavior evolution of TSCS under subgrade settlement and earthquake excitation.The refined numerical model of slab track under subgrade differential settlement is established.The short settlement wavelength of 10 m causes the separation between the base and subgrade.The dynamic model of TSCS under subgrade settlement and earthquake excitation is developed.The dynamic response of TSCS exhibits more pronounced fluctuations under the combined effects of subgrade settlement and earthquake excitation than under the effects of settlement or earthquake alone.The evaluation indexes for the running safety of train on slab track under different settlement wavelengths exhibit varying degrees of increase with settlement amplitude and are particularly sensitive to the short settlement wavelength of 10 m.The wheel unloading rate and derailment coefficient of TSCS increase with earthquake intensity.Under the settlement wavelength of 10 m and amplitude of 20 mm,the wheel unloading rate of TSCS exceeds the allowable limit when the earthquake intensity exceeds 0.17g,and the derailment coefficient exceeds the allowable limit when the earthquake intensity surpasses 0.29g. 展开更多
关键词 train-slab track coupled system mechanical behavior subgrade differential settlement earthquake excitation running safety of train
在线阅读 下载PDF
Pile-plate structure subgrade performance in seasonally frozen regions with freeze-thaw cycles
13
作者 LIU Xianfeng LIU Tianyu +3 位作者 YUAN Shengyang ZHANG Shuming REN Hao JIANG Guanlu 《Journal of Mountain Science》 2025年第9期3480-3492,共13页
The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in... The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in frozen regions remains underexplored.In seasonally frozen areas,F-T(freeze-thaw)cycles threaten subgrade stability,necessitating research on pile-plate structure’s behavior under such conditions.To address this challenge,a scaled model experiment was conducted on a silty sand foundation,simulating F-T cycles using temperature control devices.Key parameters,including soil temperature,frozen depth,and displacement,were systematically monitored.Results indicate that the bearing plate functions as an effective insulation layer,significantly reducing sub-zero temperature penetration.Additionally,the anchoring action of the piles mitigates frost heave in the foundation soil,while the plate middle restrains soil deformation more effectively due to increased constraint.The thermal insulation provided by the plate maintains higher soil temperatures,delaying the onset of freezing.By the end of each freezing stage,the vertical displacement in the natural subgrade is approximately 4 times greater than that beneath the pile-plate structure.Furthermore,the frost depth is about 1.3-1.4 times and 1.6-4.9 times greater than that measured below the plate edge and middle,respectively.These insights contribute to the development of more resilient designs for high-speed railway subgrades in seasonally frozen regions,offering engineers a robust,scientifically-backed foundation for future infrastructure projects. 展开更多
关键词 Pile-plate structure High speed railway subgrade Freeze thaw cycles Seasonally frozen soil Scaled model experiment
原文传递
Impact of sandstone slurry waste with calcium carbonate nanoparticles on geotechnical properties of clayey soil subgrade
14
作者 Amrit Singh Shekhawat Suresh Kumar Tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5318-5333,共16页
The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhan... The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhancement methods.The present study investigates the coupling effect of sandstone slurry waste(SSW)and calcium carbonate nanoparticle(CCN)as potential stabilizers to enhance the characteristics of clayey soil.A comprehensive investigation was conducted using compaction tests,plasticity index(PI)tests,California bearing ratio(CBR)tests,unconfined compressive strength(UCS)tests,and microstructural analyses of clayey soil,SSW and SSW-CCN-treated clay samples containing 5%,10%,15%,20%,25%,30%,and 35%SSW and 0.3%,0.6%,0.9%,1.2%,and 1.5%CCN mixed with clayey soil in different combinations of clay,SSW,and CCN.The findings reveal that incorporating 25%SSW with 0.9%CCN into clay soil results in an increase in the UCS from 132.2 kPa for untreated clayey soil without curing to 263 kPa after a 28-d curing period.Similarly,a rising trend in CBR results is observed up to 25%SSW addition in clay soil and up to 0.9%CCN addition in SSW-clay mixture.Initially,notable enhancements in UCS were attributed to a denser soil structure,followed by the formation of calcium–silicate–hydrate(CSH)gel,which intensified with prolonged curing.Gel patches were detected by scanning electron microscopy(SEM)in addition to particle aggregation.The results obtained from thermogravimetric analysis,Fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)supported the presence of hydration products such as CSH.The experimental study indicates that SSW,in combination with CCN,offers a sustainable alternative to traditional soil stabilizers. 展开更多
关键词 Clayey soil stabilization Sandstone slurry waste(SSW) Calcium carbonate nanoparticle(CCN) subgrade stabilization
在线阅读 下载PDF
Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment 被引量:17
15
作者 QIU Ming-ming YANG Guo-lin +3 位作者 SHEN Quan YANG Xiao WANG Gang LIN Yu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期875-890,共16页
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ... Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil. 展开更多
关键词 high-speed RAILWAY FULL-SCALE model testing dynamic response expansive SOIL service environment NEW subgrade structure
在线阅读 下载PDF
Stability analysis of subgrade cave roofs in karst region 被引量:6
16
作者 蒋冲 赵明华 曹文贵 《Journal of Central South University》 SCIE EI CAS 2008年第S2期38-44,共7页
According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bea... According to the engineering features of subgrade cave roof in karst region, the clamped beam model of subgrade cave roof in karst region was set up. Based on the catastrophe theory, the cusp catastrophe model for bearing capacity of subgrade cave roof and safe thickness of subgrade cave roof in karst region was established. The necessary instability conditions of subgrade cave roof were deduced, and then the methods to determine safe thickness of cave roofs under piles and bearing capacity of subgrade cave roof were proposed. At the same time, a practical engineering project was applied to verifying this method, which has been proved successfu1ly. At last, the major factors that affect the stability on cave roof under pile in karst region were deeply discussed and some results in quality were acquired. 展开更多
关键词 pile foundation KARST subgrade CAVE roof CUSP CATASTROPHE model stability
在线阅读 下载PDF
Application of New-type Soil Stabilizer Q2 in Subgrade Construction 被引量:1
17
作者 田鹏 唐存莲 +1 位作者 陈强 卢惠芳 《Agricultural Science & Technology》 CAS 2015年第2期384-390,共7页
The research analyzed characters of soil stabilizer and detailed the solidification mechanism.Furthermore,new type soil stabilizer Q2 was used in a base of Beijing Vocational College of Agriculture and a solidified ro... The research analyzed characters of soil stabilizer and detailed the solidification mechanism.Furthermore,new type soil stabilizer Q2 was used in a base of Beijing Vocational College of Agriculture and a solidified road with length of 250 m,width of 4 m and thickness of 0.25 m were constructed.The road was tested with an agricultural truck and subgrade tolerance to freezing was tested also.It is suggested that new type soil stabilizer would reduce construction cost of road,protect environment,and reduce construction period,with high value of application. 展开更多
关键词 Soil stabilizer Q2 Construction of subgrade APPLICATION
在线阅读 下载PDF
Field experiment of subgrade vibration induced by passing train in a seasonally frozen region of Daqing 被引量:13
18
作者 Ling Xianzhang Zhang Feng +2 位作者 Zhu Zhanyuan Ding Lin Hu Qingli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期149-157,共9页
The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times thr... The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times through the year, in normal, freezing and thawing periods, respectively, and the influence of the season, train speed and train type, is described in this paper. The results show that: (1) the vertical component is the greatest among the three components of the measured vibration near the rail track, and as the distance to the railway track increases, the dominant vibration depends on the season. (2) Compared with the vibration in the normal period, the vertical and longitudinal vibrations increase while the lateral vibration decreases in the freezing period. However, in the thawing period, the vertical and longitudinal vibrations decrease, and the lateral vibration increases. (3) As train speeds increase, the subgrade vibration increases. (4) The vibration induced by a freight train is greater than by a passenger train. These observations provide a better understanding of the vibration and dynamic stability of the subgrade and may be useful in developing criteria for railway and building construction in cold regions. 展开更多
关键词 subgrade vibration passing train characteristic acceleration seasonally frozen regions Daqing area of China
在线阅读 下载PDF
Analysis of temperature field characteristics based on subgrade site measurements of Harbin-Qiqihar High-speed Railway in a deep seasonal frozen soil region 被引量:10
19
作者 ZuRun Yue BoWen Tai TieCheng Sun 《Research in Cold and Arid Regions》 CSCD 2015年第5期547-553,共7页
Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher... Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region. 展开更多
关键词 temperature field deep seasonal permafrost soils railways subgrade
在线阅读 下载PDF
Analysis of railway subgrade frost heave deformation based on GPS 被引量:20
20
作者 Fuxun Ma Ruijie Xi Nan Xu 《Geodesy and Geodynamics》 2016年第2期143-147,共5页
In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade... In order to analyze the connection between the railway subgrade frost heave deformation and temperature variation, five GPS stations' data were used to monitor the deformation on a certain section of railway subgrade in northeast China. GAMIT software is used to process the data, providing daily solution, daytime solution and nighttime solution. Vertical trends of these five stations were analyzed to investigate frost heave effect on railway subgrade deformation. The results show that the temperature difference between daytime and night induces stations, significant vertical displacement, and the temperature difference between seasons causes settlement of station which appears linear trend. 展开更多
关键词 GPS Railway subgrade Frost heave Permafrost Deformation monitoring
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部