In order to enhance communication reliability of differential frequency hopping system, a receiver implemented with the concatenation of an optimal subblock-by-subblock maximum a posteriori probability (OBB-MAP) detec...In order to enhance communication reliability of differential frequency hopping system, a receiver implemented with the concatenation of an optimal subblock-by-subblock maximum a posteriori probability (OBB-MAP) detector and a soft-decision Turbo decoder is proposed and validated in both AWGN and Rayleigh flat fading channels. It is shown that the OBB-MAP decoder can iteratively decode a cyclic trellis, and back-search the trellis for any state to obtain estimates for the prior information bits which can be employed by soft-decision Turbo decoder. The proposed receiver achieves a better bit error rate(BER) performance than maximum likelihood sequence estimation(MLSE) detector employing Viterbi algorithm. The simulation results demonstrate that the combined signal detection method improves communication quality.展开更多
文摘In order to enhance communication reliability of differential frequency hopping system, a receiver implemented with the concatenation of an optimal subblock-by-subblock maximum a posteriori probability (OBB-MAP) detector and a soft-decision Turbo decoder is proposed and validated in both AWGN and Rayleigh flat fading channels. It is shown that the OBB-MAP decoder can iteratively decode a cyclic trellis, and back-search the trellis for any state to obtain estimates for the prior information bits which can be employed by soft-decision Turbo decoder. The proposed receiver achieves a better bit error rate(BER) performance than maximum likelihood sequence estimation(MLSE) detector employing Viterbi algorithm. The simulation results demonstrate that the combined signal detection method improves communication quality.