This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditiona...This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system.展开更多
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin...The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.展开更多
The phenomenon of shock/shock interaction(SSI)is widely observed in high-speed flow,and the double wedge SSI represents one of the typical problems encountered.The control effect of single-pulse plasma synthetic jet(P...The phenomenon of shock/shock interaction(SSI)is widely observed in high-speed flow,and the double wedge SSI represents one of the typical problems encountered.The control effect of single-pulse plasma synthetic jet(PSJ)on double wedge type-Ⅵand type-ⅤSSI was investigated experimentally and numerically,and the influence of discharge energy was also explored.The findings indicate that the interaction between PSJ and the high-speed freestream results in the formation of a plasma layer and a jet shock,which collectively governs the control of SSI.The control mechanism of single-pulse PSJ on SSI lies in its capacity to attenuate both shock and SSI.For type-ⅥSSI,the original second-wedge oblique shock is eliminated under the control of PSJ,resulting in a new type-ⅥSSI formed by the jet shock and the first-wedge oblique shock.For type-ⅤSSI,the presence of PSJ effectively mitigates the intensity of Mach stem,supersonic jet,and reflected shocks,thereby facilitating its transition into type-ⅥSSI.The numerical results indicate that the peak pressure can be reduced by approximately 32.26%at maximum.Furthermore,the development of PSJ also extends in the Z direction.The pressure decreases in the area affected by both PSJ and jet shock due to the attenuation of the SSI zone.With increasing discharge energy,the control effect of PSJ on SSI is gradually enhanced.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction ...The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.展开更多
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe...Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.展开更多
Using newly developed methods and software, association mapping was conducted for chromium content and total sugar in tobacco leaf, based on four-omics datasets. Our objective was to collect data on genotype and pheno...Using newly developed methods and software, association mapping was conducted for chromium content and total sugar in tobacco leaf, based on four-omics datasets. Our objective was to collect data on genotype and phenotype for 60 leaf samples at four developmental stages, from three plant architectural positions and for three cultivars that were grown in two locations. Association mapping was conducted to detect genetic variants at quantitative trait SNP(QTS) loci, quantitative trait transcript(QTT) differences,quantitative trait protein(QTP) variability, and quantitative trait metabolite(QTM) changes,which can be summarized as QTX locus variation. The total heritabilities of the four-omics loci for both traits tested were 23.60% for epistasis and 15.26% for treatment interaction.Epistasis and environment × treatment interaction had important impacts on complex traits at all-omics levels. For decreasing chromium content and increasing total sugar in tobacco leaf, six methylated loci can be directly used for marker-assisted selection, and expression of ten QTTs, seven QTPs and six QTMs can be modified by selection or cultivation.展开更多
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app...Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.展开更多
This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot...This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot-specific inner loop, which is a neuroadaptive controller, learns the robot dynamics online and makes the robot respond like a prescribed impedance model. This loop uses no task information, including no prescribed trajectory. A task-specific outer loop takes into account the human operator dynamics and adapts the prescribed robot impedance model so that the combined human-robot system has desirable characteristics for task performance. This design is based on model reference adaptive control, but of a nonstandard form. The net result is a controller with both adaptive impedance characteristics and assistive inputs that augment the human operator to provide improved task performance of the human-robot team. Simulations verify the performance of the proposed controller in a repetitive point-to-point motion task. Actual experimental implementations on a PR2 robot further corroborate the effectiveness of the approach.展开更多
The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low mag...The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.展开更多
Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for ...Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for smearing the passage shock foot via Shock Control Bump(SCB)located on transonic compressor rotor blade suction side is implemented to shrink the region of boundary layer separation.The curved windward section of SCB with constant adverse pressure gradient is constructed ahead of passage shock-impingement point at design rotor speed of Rotor 37 to get the improved model.Numerical investigations on both two models have been conducted employing Reynolds-Averaged Navier-Stokes(RANS)method to reveal flow physics of SCB.Comparisons and analyses on simulation results have also been carried out,showing that passage shock foot of baseline is replaced with a family of compression waves and a weaker shock foot for moderate adverse pressure gradient as well as suppression of boundary layer separations and secondary flow of low-momentum fluid within boundary layer.It is found that adiabatic efficiency and total pressure ratio of improved blade exceeds those of baseline at 95%-100%design rotor speed,and then slightly worsens with decrease of rotatory speed till both equal below 60%rated speed.The investigated conclusion implies a potential promise for future practical applications of SCB in both transonic and supersonic compressors.展开更多
The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic co...The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic compatibility is the most critical technology for wearable systems.Full structural compatibility can improve the intrinsic safety of the exoskeleton,and precise intention understanding and motion control can improve the comfort of the exoskeleton.This paper first designs a physiologically functional bionic lower limb exoskeleton based on the study of bone and joint functional anatomy and analyzes the drive mapping model of the dual closedloop four-link knee joint.Secondly,an exoskeleton dual closed-loop controller composed of a position inner loop and a force outer loop is designed.The inner loop of the controller adopts the PID control algorithm,and the outer loop adopts the adaptive admittance control algorithm based on human-robot interaction force(HRI).The controller can adaptively adjust the admittance parameters according to the HRI to respond to dynamic changes in the mechanical and physical parameters of the human-robot system,thereby improving control compliance and the wearing comfort of the exoskeleton system.Finally,we built a joint simulation experiment platform based on SolidWorks/Simulink to conduct virtual prototype simulation experiments and recruited volunteers to wear rehabilitation exoskeletons to conduct related control experiments.Experimental results show that the designed physiologically functional bionic exoskeleton and adaptive admittance controller can significantly improve the accuracy of human-robotic joint motion tracking,effectively reducing human-machine interaction forces and improving the comfort and safety of the wearer.This paper proposes a dual-closed loop four-link knee joint exoskeleton and a variable admittance control method based on HRI,which provides a new method for the design and control of exoskeletons with high compatibility.展开更多
Inflorescences are flower-bearing shoots that originate from pools of stem cells in shoot apical meristems (SAM).Inflorescence architecture is determined by a process of meristem maturation,during which stem cell fate...Inflorescences are flower-bearing shoots that originate from pools of stem cells in shoot apical meristems (SAM).Inflorescence architecture is determined by a process of meristem maturation,during which stem cell fate switches from a vegetative to a reproductive growth program.A major factor in plant reproductive success in nature and yield in agriculture is the number of branches and flowers on inflorescences (Kobayashi and Weigel,2007;展开更多
Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue...Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue.We saw that discrepancies between textual content and associated images can lead to visual noise,potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive effectiveness.To solve this visual noise problem,we propose an innovative KDNR-MNMT model.Themodel combines the knowledge distillation technique with an anti-noise interaction mechanism,which makes full use of the synthesized graphic knowledge and local image interaction masks,aiming to extract more effective visual features.Meanwhile,the KDNR-MNMT model adopts a multimodal adaptive gating fusion strategy to enhance the constructive interaction of different modal information.By integrating a perceptual attention mechanism,which uses cross-modal interaction cues within the Transformer framework,our approach notably enhances the quality of machine translation outputs.To confirmthemodel’s performance,we carried out extensive testing and assessment on the extensively utilized Multi30K dataset.The outcomes of our experiments prove substantial enhancements in our model’s BLEU and METEOR scores,with respective increases of 0.78 and 0.99 points over prevailing methods.This accomplishment affirms the potency of our strategy for mitigating visual interference and heralds groundbreaking advancements within themultimodal NMT domain,further propelling the evolution of this scholarly pursuit.展开更多
Tuned Mass Damper (TMD) was applied to an offshore structure to control ocean wave-induced vibration, In the analysis of the dynamic response of the offshore structure, fluid-structure interaction is considered and ...Tuned Mass Damper (TMD) was applied to an offshore structure to control ocean wave-induced vibration, In the analysis of the dynamic response of the offshore structure, fluid-structure interaction is considered and the errors, which occur in the linearization of the interaction, are investigated. For the investigation of the performance of TMD in controlling the vibration, both regular waves with different periods and irregular waves with different significant wave heights are used. Based on the numerical analysis it is concluded that the fluid-structure interaction should be considered in the evaluation of the capability of TMD in vibration control of offshore structures.展开更多
Industrial processes are mostly large-scale systems with high order.They use fully centralized control strategy,the parameters of which are difficult to tune.In the design of large-scale systems,the decomposition acco...Industrial processes are mostly large-scale systems with high order.They use fully centralized control strategy,the parameters of which are difficult to tune.In the design of large-scale systems,the decomposition according to the interaction between input and output variables is the first step and the basis for the selection of control structure.In this paper,the decomposition principle of processes in large-scale systems is proposed for the design of control structure.A new variable pairing method is presented,considering the steady-state information and dynamic response of large-scale system.By selecting threshold values,the related matrix can be transformed into the adjoining matrixes,which directly measure the couple among different loops.The optimal number of controllers can be obtained after decomposing the large-scale system.A practical example is used to demonstrate the validity and feasibility of the proposed interaction decomposition principle in process large-scale systems.展开更多
The present paper presents a new method to solve fluid structure interaction problem. Our computational method is based on controllability approach. Given a target structural displacement we will find a control steeri...The present paper presents a new method to solve fluid structure interaction problem. Our computational method is based on controllability approach. Given a target structural displacement we will find a control steering the displacement of the structure u to . We need to define a payoff functional (J): where u solves the structure equation for the control and is a fixed value. Our aim is to find a control which minimizes the payoff criterion. And therefore we find u the beam displacement, v the velocity of the fluid and p the pressure of the fluid.展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
For robot interaction control,the interaction force between the robot and the manipulated object or environment should be monitored.Impedance control is a type of interaction control.Specifically,in impedance control,...For robot interaction control,the interaction force between the robot and the manipulated object or environment should be monitored.Impedance control is a type of interaction control.Specifically,in impedance control,the dynamic relationship between the interaction force and the resulting motion is controlled.In order to control the impedance of a mechanical system,typically,the interaction force has to be sensed.Due to the inherent limitations of direct force sensing at the interaction site,in the present work,the interaction force is observed using robust observers.In particular,to enhance the accuracy of impedance control,a first order sliding mode impedance controller is designed and incorporated in the present paper.Its advantage over positionbased interaction control algorithms is demonstrated through experimentation.Experimental results are given to show the effectiveness of the proposed algorithms.展开更多
Objective To indicate the deficiency of the classical method for analyzing data on individual matching case-control study in consideration of the interaction between the study factor (exposure) and the matching factor...Objective To indicate the deficiency of the classical method for analyzing data on individual matching case-control study in consideration of the interaction between the study factor (exposure) and the matching factor, and to find out a proper method for handling this deficiency. Method First, experimental data with 50 pairs of cases and controls were used for strata analysis according to the values of a matching factor to illustrate the possible interaction between a risk factor (exposure) and the matching factor. Second, a detailed procedure was proposed for analyzing such data. Results Interaction between the study factor and matching factor was demonstrated by using strata analysis and unconditional logistic regression analysis. Therefore the results from the classical analysis for such data might be incorrect. Conclusion Data from individual matching case-control study design should be dealt with strata analysis or multivariate analysis to explore and evaluate the possible interaction between the s展开更多
基金funded by Sponsorship of Science and Technology Project of State Grid Xinjiang Electric Power Co.,Ltd.,grant number SGXJ0000TKJS2400168.
文摘This study presents an emergency control method for sub-synchronous oscillations in wind power gridconnected systems based on transfer learning,addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios.By combining deep reinforcement learning with a transfer learning framework,cross-scenario knowledge transfer is achieved,significantly enhancing the adaptability of the control strategy.First,a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning.A reward evaluation system based on the active power oscillation pattern of the system is proposed,introducing penalty functions for the number of machine-shedding rounds and the number of machines shed.This avoids the economic losses and grid security risks caused by the excessive one-time shedding of wind turbines.Furthermore,transfer learning is introduced into model training to enhance the model’s generalization capability in dealing with complex scenarios of actual wind power grid integration systems.By introducing the Maximum Mean Discrepancy(MMD)algorithm to calculate the distribution differences between source data and target data,the online decision-making reliability of the emergency control model is improved.Finally,the effectiveness of the proposed emergency control method for multi-scenario sub-synchronous oscillation in wind power grid integration systems based on transfer learning is analyzed using the New England 39-bus system.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03)+1 种基金Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07)the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
文摘The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
基金supported by the Independent Innovation Science Fund of National University of Defense Technology(No.24-ZZCX-BC-05)National Natural Science Foundation of China(Nos.92271110 and 12202488)+2 种基金the Major National Science and Technology Project(No.J2019-Ⅲ0010-0054)the National Postdoctoral Researcher Program of China(No.GZB20230985)the Natural Science Program of National University of Defense Technology(No.ZK22-30)。
文摘The phenomenon of shock/shock interaction(SSI)is widely observed in high-speed flow,and the double wedge SSI represents one of the typical problems encountered.The control effect of single-pulse plasma synthetic jet(PSJ)on double wedge type-Ⅵand type-ⅤSSI was investigated experimentally and numerically,and the influence of discharge energy was also explored.The findings indicate that the interaction between PSJ and the high-speed freestream results in the formation of a plasma layer and a jet shock,which collectively governs the control of SSI.The control mechanism of single-pulse PSJ on SSI lies in its capacity to attenuate both shock and SSI.For type-ⅥSSI,the original second-wedge oblique shock is eliminated under the control of PSJ,resulting in a new type-ⅥSSI formed by the jet shock and the first-wedge oblique shock.For type-ⅤSSI,the presence of PSJ effectively mitigates the intensity of Mach stem,supersonic jet,and reflected shocks,thereby facilitating its transition into type-ⅥSSI.The numerical results indicate that the peak pressure can be reduced by approximately 32.26%at maximum.Furthermore,the development of PSJ also extends in the Z direction.The pressure decreases in the area affected by both PSJ and jet shock due to the attenuation of the SSI zone.With increasing discharge energy,the control effect of PSJ on SSI is gradually enhanced.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金supported by the National Natural Science Foundation of China(Nos.11302012,51420105008,51476004,11572025 and 51136003)the National Basic Research Program of China(No.2012CB720205)The computational time for the present study was provided by the UK Turbulence Consortium(EPSRC grant EP/L000261/1)
文摘The efficiency and mechanism of an active control device "'Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The , merical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were sys- tematically validated against the available wind tunnel particle image velocimetry (PIV) measure- ments of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator "'Spark Jet'" was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resis- tant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.
基金funded by the National Natural Science Foundation of China (No. 52304133)the National Key R&D Program of China (No. 2022YFC3004605)the Department of Science and Technology of Liaoning Province (No. 2023-BS-083)。
文摘Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices.
基金supported by the National Basic Research Program of China (2011CB109306 and 2009CB118404)the Program of Introducing Talents of Discipline to Universities of China ("111" Project, B06014)Research Programs (CNTC-D2011100, CNTC-[2012]146, NY-[2011]3047, QKHRZ [2013] 02)
文摘Using newly developed methods and software, association mapping was conducted for chromium content and total sugar in tobacco leaf, based on four-omics datasets. Our objective was to collect data on genotype and phenotype for 60 leaf samples at four developmental stages, from three plant architectural positions and for three cultivars that were grown in two locations. Association mapping was conducted to detect genetic variants at quantitative trait SNP(QTS) loci, quantitative trait transcript(QTT) differences,quantitative trait protein(QTP) variability, and quantitative trait metabolite(QTM) changes,which can be summarized as QTX locus variation. The total heritabilities of the four-omics loci for both traits tested were 23.60% for epistasis and 15.26% for treatment interaction.Epistasis and environment × treatment interaction had important impacts on complex traits at all-omics levels. For decreasing chromium content and increasing total sugar in tobacco leaf, six methylated loci can be directly used for marker-assisted selection, and expression of ten QTTs, seven QTPs and six QTMs can be modified by selection or cultivation.
文摘Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.
基金The work was supported by the National Science Foundation,the Office of Naval Research grant,the AFOSR (Air Force Office of Scientific Research) EOARD (European Office of Aerospace Research and Development) grant,the U.S. Army Research Office grant
文摘This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot-specific inner loop, which is a neuroadaptive controller, learns the robot dynamics online and makes the robot respond like a prescribed impedance model. This loop uses no task information, including no prescribed trajectory. A task-specific outer loop takes into account the human operator dynamics and adapts the prescribed robot impedance model so that the combined human-robot system has desirable characteristics for task performance. This design is based on model reference adaptive control, but of a nonstandard form. The net result is a controller with both adaptive impedance characteristics and assistive inputs that augment the human operator to provide improved task performance of the human-robot team. Simulations verify the performance of the proposed controller in a repetitive point-to-point motion task. Actual experimental implementations on a PR2 robot further corroborate the effectiveness of the approach.
基金Project supported by the National Key R&D Program of China(Nos.2019YFA0405300 and 2019YFA0405203)the Chinese Scholarship Council(CSC)(No.201903170195)。
文摘The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.
基金the funding from the National Key Research and Development Program of China(No.2016YFB0901402)the Key Project of National Natural Science Foundation of China(No.51790513)。
文摘Flow separation due to shock wave/boundary layer interaction is dominated in blade passage with supersonic relative incoming flow,which always accompanies aerodynamic performance penalties.A loss reduction method for smearing the passage shock foot via Shock Control Bump(SCB)located on transonic compressor rotor blade suction side is implemented to shrink the region of boundary layer separation.The curved windward section of SCB with constant adverse pressure gradient is constructed ahead of passage shock-impingement point at design rotor speed of Rotor 37 to get the improved model.Numerical investigations on both two models have been conducted employing Reynolds-Averaged Navier-Stokes(RANS)method to reveal flow physics of SCB.Comparisons and analyses on simulation results have also been carried out,showing that passage shock foot of baseline is replaced with a family of compression waves and a weaker shock foot for moderate adverse pressure gradient as well as suppression of boundary layer separations and secondary flow of low-momentum fluid within boundary layer.It is found that adiabatic efficiency and total pressure ratio of improved blade exceeds those of baseline at 95%-100%design rotor speed,and then slightly worsens with decrease of rotatory speed till both equal below 60%rated speed.The investigated conclusion implies a potential promise for future practical applications of SCB in both transonic and supersonic compressors.
基金Supported by National Natural Science Foundation of China(Grant Nos.U23A20338,62103131 and 62203149)Hebei Provincial Natural Science Foundation(Grant No.E2022202171).
文摘The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic compatibility is the most critical technology for wearable systems.Full structural compatibility can improve the intrinsic safety of the exoskeleton,and precise intention understanding and motion control can improve the comfort of the exoskeleton.This paper first designs a physiologically functional bionic lower limb exoskeleton based on the study of bone and joint functional anatomy and analyzes the drive mapping model of the dual closedloop four-link knee joint.Secondly,an exoskeleton dual closed-loop controller composed of a position inner loop and a force outer loop is designed.The inner loop of the controller adopts the PID control algorithm,and the outer loop adopts the adaptive admittance control algorithm based on human-robot interaction force(HRI).The controller can adaptively adjust the admittance parameters according to the HRI to respond to dynamic changes in the mechanical and physical parameters of the human-robot system,thereby improving control compliance and the wearing comfort of the exoskeleton system.Finally,we built a joint simulation experiment platform based on SolidWorks/Simulink to conduct virtual prototype simulation experiments and recruited volunteers to wear rehabilitation exoskeletons to conduct related control experiments.Experimental results show that the designed physiologically functional bionic exoskeleton and adaptive admittance controller can significantly improve the accuracy of human-robotic joint motion tracking,effectively reducing human-machine interaction forces and improving the comfort and safety of the wearer.This paper proposes a dual-closed loop four-link knee joint exoskeleton and a variable admittance control method based on HRI,which provides a new method for the design and control of exoskeletons with high compatibility.
基金supported by startup funding to C.X.from State Key Laboratory of Plant Genomics and Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,and a National Science Foundation grant(IOS-1556171)to Z.B.L
文摘Inflorescences are flower-bearing shoots that originate from pools of stem cells in shoot apical meristems (SAM).Inflorescence architecture is determined by a process of meristem maturation,during which stem cell fate switches from a vegetative to a reproductive growth program.A major factor in plant reproductive success in nature and yield in agriculture is the number of branches and flowers on inflorescences (Kobayashi and Weigel,2007;
基金supported by the Henan Provincial Science and Technology Research Project:232102211017,232102211006,232102210044,242102211020 and 242102211007the ZhengzhouUniversity of Light Industry Science and Technology Innovation Team Program Project:23XNKJTD0205.
文摘Within the realm of multimodal neural machine translation(MNMT),addressing the challenge of seamlessly integrating textual data with corresponding image data to enhance translation accuracy has become a pressing issue.We saw that discrepancies between textual content and associated images can lead to visual noise,potentially diverting the model’s focus away from the textual data and so affecting the translation’s comprehensive effectiveness.To solve this visual noise problem,we propose an innovative KDNR-MNMT model.Themodel combines the knowledge distillation technique with an anti-noise interaction mechanism,which makes full use of the synthesized graphic knowledge and local image interaction masks,aiming to extract more effective visual features.Meanwhile,the KDNR-MNMT model adopts a multimodal adaptive gating fusion strategy to enhance the constructive interaction of different modal information.By integrating a perceptual attention mechanism,which uses cross-modal interaction cues within the Transformer framework,our approach notably enhances the quality of machine translation outputs.To confirmthemodel’s performance,we carried out extensive testing and assessment on the extensively utilized Multi30K dataset.The outcomes of our experiments prove substantial enhancements in our model’s BLEU and METEOR scores,with respective increases of 0.78 and 0.99 points over prevailing methods.This accomplishment affirms the potency of our strategy for mitigating visual interference and heralds groundbreaking advancements within themultimodal NMT domain,further propelling the evolution of this scholarly pursuit.
文摘Tuned Mass Damper (TMD) was applied to an offshore structure to control ocean wave-induced vibration, In the analysis of the dynamic response of the offshore structure, fluid-structure interaction is considered and the errors, which occur in the linearization of the interaction, are investigated. For the investigation of the performance of TMD in controlling the vibration, both regular waves with different periods and irregular waves with different significant wave heights are used. Based on the numerical analysis it is concluded that the fluid-structure interaction should be considered in the evaluation of the capability of TMD in vibration control of offshore structures.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)
文摘Industrial processes are mostly large-scale systems with high order.They use fully centralized control strategy,the parameters of which are difficult to tune.In the design of large-scale systems,the decomposition according to the interaction between input and output variables is the first step and the basis for the selection of control structure.In this paper,the decomposition principle of processes in large-scale systems is proposed for the design of control structure.A new variable pairing method is presented,considering the steady-state information and dynamic response of large-scale system.By selecting threshold values,the related matrix can be transformed into the adjoining matrixes,which directly measure the couple among different loops.The optimal number of controllers can be obtained after decomposing the large-scale system.A practical example is used to demonstrate the validity and feasibility of the proposed interaction decomposition principle in process large-scale systems.
文摘The present paper presents a new method to solve fluid structure interaction problem. Our computational method is based on controllability approach. Given a target structural displacement we will find a control steering the displacement of the structure u to . We need to define a payoff functional (J): where u solves the structure equation for the control and is a fixed value. Our aim is to find a control which minimizes the payoff criterion. And therefore we find u the beam displacement, v the velocity of the fluid and p the pressure of the fluid.
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
文摘For robot interaction control,the interaction force between the robot and the manipulated object or environment should be monitored.Impedance control is a type of interaction control.Specifically,in impedance control,the dynamic relationship between the interaction force and the resulting motion is controlled.In order to control the impedance of a mechanical system,typically,the interaction force has to be sensed.Due to the inherent limitations of direct force sensing at the interaction site,in the present work,the interaction force is observed using robust observers.In particular,to enhance the accuracy of impedance control,a first order sliding mode impedance controller is designed and incorporated in the present paper.Its advantage over positionbased interaction control algorithms is demonstrated through experimentation.Experimental results are given to show the effectiveness of the proposed algorithms.
文摘Objective To indicate the deficiency of the classical method for analyzing data on individual matching case-control study in consideration of the interaction between the study factor (exposure) and the matching factor, and to find out a proper method for handling this deficiency. Method First, experimental data with 50 pairs of cases and controls were used for strata analysis according to the values of a matching factor to illustrate the possible interaction between a risk factor (exposure) and the matching factor. Second, a detailed procedure was proposed for analyzing such data. Results Interaction between the study factor and matching factor was demonstrated by using strata analysis and unconditional logistic regression analysis. Therefore the results from the classical analysis for such data might be incorrect. Conclusion Data from individual matching case-control study design should be dealt with strata analysis or multivariate analysis to explore and evaluate the possible interaction between the s