Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection alg...This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection.展开更多
In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike m...In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike moment algorithm is proposed.Non-orthogonal quadratic B-spline wavelet transform algorithm is adopted to get the pixel edge of miniature parts?andthe moment invariant of Zernike moment algorithm is used for refining the pixel edge to get sub-pixel edges.A real-time detectionsystem based on the proposed algorithm for miniature parts is established.The general system structure and operational principle are given,the real-time image acquisition and detection are completed,the results of edge detection are analyzed and the detection precision is evaluated.The results show that parts size can be0.01-10mm and the detection precision reaches0.01%-0.1%.Therefore,the edge of the miniature parts can be accurately identified and the detection precision can be improved to sub-pixel level,which meets the requirements of miniature parts precision detection.展开更多
The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based...The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.展开更多
The classical edge detectors work fine with the high quality pictures, but often are not good enough for noisy images because they cannot distinguish edges of different significance. The paper presented a novel approa...The classical edge detectors work fine with the high quality pictures, but often are not good enough for noisy images because they cannot distinguish edges of different significance. The paper presented a novel approach to multiscale edge detection for noisy images using wavelet transforms based on Lipschitz regularity coefficients and a cascade algorithm. The relationship between wavelet transform and Lipschitz regularity was established. The proposed wavelet based edge detection algorithm combined the coefficients of wavelet transforms along with a cascade algorithm which significantly improves the result. The comparison between the proposed method and the classical edge detectors was carried out. The algorithm was applied to various images and its performance was discussed. The results of edge detection of contaminated images using the proposed algorithm show that it works better than the classical edge detectors.展开更多
A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies ...A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.展开更多
This paper presents a new method for detection of edges in digital angiographic images. It is found that variances of local regions across edges of images are statistically different from that of those where no edge i...This paper presents a new method for detection of edges in digital angiographic images. It is found that variances of local regions across edges of images are statistically different from that of those where no edge is crossed. This difference can be utilized for the detection of edges of angiographic images. An algorithm based on local variance is proposed. As a result, the edge-detection algorithm is not sensitive to noise and low-level textures of images. A computer program based on the new algorithm has been developed and used by several hospitals.展开更多
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications ...A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi- ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter- mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.展开更多
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system...In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.展开更多
In this paper, the morphological filter based on parametric edge detection is presented and applied to imaging ladar image with speckle noise. This algorithm and Laplacian of Gaussian (LOG) operator are compared on ed...In this paper, the morphological filter based on parametric edge detection is presented and applied to imaging ladar image with speckle noise. This algorithm and Laplacian of Gaussian (LOG) operator are compared on edge detection. The experimental results indicate the superior performance of this kind of the edge detection.展开更多
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金This work was supported by the National Natural Science Foundation of China(61550110248)the Sichuan Science and Technology Department project(2019YFG0190)the University of Electronic Science and Technology of China project(H04W170186).
文摘This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection.
基金Beijing Higher Education and Teaching Project(No.2014-ms148)
文摘In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike moment algorithm is proposed.Non-orthogonal quadratic B-spline wavelet transform algorithm is adopted to get the pixel edge of miniature parts?andthe moment invariant of Zernike moment algorithm is used for refining the pixel edge to get sub-pixel edges.A real-time detectionsystem based on the proposed algorithm for miniature parts is established.The general system structure and operational principle are given,the real-time image acquisition and detection are completed,the results of edge detection are analyzed and the detection precision is evaluated.The results show that parts size can be0.01-10mm and the detection precision reaches0.01%-0.1%.Therefore,the edge of the miniature parts can be accurately identified and the detection precision can be improved to sub-pixel level,which meets the requirements of miniature parts precision detection.
基金Project(61673400) supported by the National Natural Science Foundation of China Project(61590923) supported by the Major Program of the National Natural Science Foundation of China+2 种基金 Project(61621062) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China Project(61533020) supported by the State Key Program of National Natural Science of China Project(502221709) supported by the Fundamental Research Funds for the Central Universities, China
文摘The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.
文摘The classical edge detectors work fine with the high quality pictures, but often are not good enough for noisy images because they cannot distinguish edges of different significance. The paper presented a novel approach to multiscale edge detection for noisy images using wavelet transforms based on Lipschitz regularity coefficients and a cascade algorithm. The relationship between wavelet transform and Lipschitz regularity was established. The proposed wavelet based edge detection algorithm combined the coefficients of wavelet transforms along with a cascade algorithm which significantly improves the result. The comparison between the proposed method and the classical edge detectors was carried out. The algorithm was applied to various images and its performance was discussed. The results of edge detection of contaminated images using the proposed algorithm show that it works better than the classical edge detectors.
文摘A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model, gray level l , at pixel location i , in an image X , depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.
文摘This paper presents a new method for detection of edges in digital angiographic images. It is found that variances of local regions across edges of images are statistically different from that of those where no edge is crossed. This difference can be utilized for the detection of edges of angiographic images. An algorithm based on local variance is proposed. As a result, the edge-detection algorithm is not sensitive to noise and low-level textures of images. A computer program based on the new algorithm has been developed and used by several hospitals.
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.
基金The National Key Technology R&D Program of China under contract No.2011BAH23B04the National High Technology Research and Development Program(863 Program)of China under contract No.2007AA092202
文摘A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi- ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter- mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.
文摘In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.
文摘In this paper, the morphological filter based on parametric edge detection is presented and applied to imaging ladar image with speckle noise. This algorithm and Laplacian of Gaussian (LOG) operator are compared on edge detection. The experimental results indicate the superior performance of this kind of the edge detection.