Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditio...Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.展开更多
Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the ob...Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the object detection, while automatically discriminating 3-D corners from ordinary corners is difficult. A novel method for 3-D corner detection is proposed based on the image graph grammar, and it can detect the 3-D features of corners to some extent. Experimental results show that the method is valid and the 3-D corner is useful for image matching.展开更多
Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented. LOG ( Laplacian of Gaussian ) operator is adopted to detec...Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented. LOG ( Laplacian of Gaussian ) operator is adopted to detect image edge. Vgroove center is extracted by corner detection of extremum curvature. Subpixel position is obtained by Lagarange polynomial interpolation algorithm. Experiment results show that the method is brief and applied, and is sufficient for the real time of robot welding by laser sensors.展开更多
In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adapti...In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adaptive Harris corner detection to extract image features,which will be used to produce a binary feature map,and the map is very crucial to the generation of watermark registered later.By properly choosing the parameters of aforementioned techniques such as the threshold T and the radius of local feature region R,the feature map is so much more stable and distinguishing that it can be used to construct robust watermark.Simulations demonstrate that the proposed scheme is resistant to many kinds of signal processing and malicious attacks such as Gaussian blurring,additive noising,JPEG lossy compression,cropping,scaling and slight rotation operation.Compared with a relative scheme such as that of Chang's,the scheme in this paper is more practicable and reliable and can be applied to the area of copyright protection.展开更多
Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images use...Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.展开更多
With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engine...With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engineering,and computer vision.This is due to the fact that,monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents(e.g.sports).One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles(UAVs),because UAVs have the capability to acquiring fast,low costs,high-resolution and real-time images over crowd areas.In addition,geo-referenced images can also be provided through integration of on-board positioning sensors(e.g.GPS/IMU)with vision sensors(digital cameras and laser scanner).In this paper,a new testing procedure based on feature from accelerated segment test(FAST)algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions.The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order.A single pixel which takes the ranking number 9(for FAST-9)or 12(for FAST-12)was then compared with the center pixel.Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features.The results show that the proposed algorithms are able to extract crowd features from different UAV images.Overall,the values of Completeness range from 55 to 70%whereas the range of correctness values was 91 to 94%.展开更多
A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on t...A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm.展开更多
In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike m...In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike moment algorithm is proposed.Non-orthogonal quadratic B-spline wavelet transform algorithm is adopted to get the pixel edge of miniature parts?andthe moment invariant of Zernike moment algorithm is used for refining the pixel edge to get sub-pixel edges.A real-time detectionsystem based on the proposed algorithm for miniature parts is established.The general system structure and operational principle are given,the real-time image acquisition and detection are completed,the results of edge detection are analyzed and the detection precision is evaluated.The results show that parts size can be0.01-10mm and the detection precision reaches0.01%-0.1%.Therefore,the edge of the miniature parts can be accurately identified and the detection precision can be improved to sub-pixel level,which meets the requirements of miniature parts precision detection.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
文摘Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.
文摘Most of local feature descriptors assume that the scene is planar. In the real scene, the captured images come from the 3-D world. 3-D corner as a novel invariant feature is important for the image matching and the object detection, while automatically discriminating 3-D corners from ordinary corners is difficult. A novel method for 3-D corner detection is proposed based on the image graph grammar, and it can detect the 3-D features of corners to some extent. Experimental results show that the method is valid and the 3-D corner is useful for image matching.
基金This work is financially supported by National Nature Science Foundation of China (Grant No. 50175027).
文摘Subpixel accuracy for V-groove center in robot welding is researched and a software measure to increase the accuracy of seam tracking by laser is presented. LOG ( Laplacian of Gaussian ) operator is adopted to detect image edge. Vgroove center is extracted by corner detection of extremum curvature. Subpixel position is obtained by Lagarange polynomial interpolation algorithm. Experiment results show that the method is brief and applied, and is sufficient for the real time of robot welding by laser sensors.
基金Supported by the National Natural Science Foundation of China (60873117)the Key Program of Natural Science Foundation of Tianjin (07JCZDJC06600)
文摘In this paper,a novel zero-watermark copyright authentication scheme based on Internet public certification system is proposed.This approach utilizes Haar integer wavelet transform based on a lifting scheme and adaptive Harris corner detection to extract image features,which will be used to produce a binary feature map,and the map is very crucial to the generation of watermark registered later.By properly choosing the parameters of aforementioned techniques such as the threshold T and the radius of local feature region R,the feature map is so much more stable and distinguishing that it can be used to construct robust watermark.Simulations demonstrate that the proposed scheme is resistant to many kinds of signal processing and malicious attacks such as Gaussian blurring,additive noising,JPEG lossy compression,cropping,scaling and slight rotation operation.Compared with a relative scheme such as that of Chang's,the scheme in this paper is more practicable and reliable and can be applied to the area of copyright protection.
基金partially supported by the National Natural Science Foundation of China(No.41171323)Jiangsu Provincial Natural Science Foundation(No.BK2012018)+2 种基金the Key Laboratory of Geo-Informatics of National Administration of Surveying,Mapping and Geoinformation of China(No.201109)partially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities.
文摘Conventional change detection approaches are mainly based on per-pixel processing,which ignore the sub-pixel spectral variation resulted from spectral mixture.Especially for medium-resolution remote sensing images used in urban landcover change monitoring,land use/cover components within a single pixel are usually complicated and heterogeneous due to the limitation of the spatial resolution.Thus,traditional hard detection methods based on pure pixel assumption may lead to a high level of omission and commission errors inevitably,degrading the overall accuracy of change detection.In order to address this issue and find a possible way to exploit the spectral variation in a sub-pixel level,a novel change detection scheme is designed based on the spectral mixture analysis and decision-level fusion.Nonlinear spectral mixture model is selected for spectral unmixing,and change detection is implemented in a sub-pixel level by investigating the inner-pixel subtle changes and combining multiple composition evidences.The proposed method is tested on multi-temporal Landsat Thematic Mapper and China–Brazil Earth Resources Satellite remote sensing images for the land-cover change detection over urban areas.The effectiveness of the proposed approach is confirmed in terms of several accuracy indices in contrast with two pixel-based change detection methods(i.e.change vector analysis and principal component analysis-based method).In particular,the proposed sub-pixel change detection approach not only provides the binary change information,but also obtains the characterization about change direction and intensity,which greatly extends the semantic meaning of the detected change targets.
文摘With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engineering,and computer vision.This is due to the fact that,monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents(e.g.sports).One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles(UAVs),because UAVs have the capability to acquiring fast,low costs,high-resolution and real-time images over crowd areas.In addition,geo-referenced images can also be provided through integration of on-board positioning sensors(e.g.GPS/IMU)with vision sensors(digital cameras and laser scanner).In this paper,a new testing procedure based on feature from accelerated segment test(FAST)algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions.The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order.A single pixel which takes the ranking number 9(for FAST-9)or 12(for FAST-12)was then compared with the center pixel.Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features.The results show that the proposed algorithms are able to extract crowd features from different UAV images.Overall,the values of Completeness range from 55 to 70%whereas the range of correctness values was 91 to 94%.
文摘A new parallel algorithm for corner detection on object contour is presented in the paper. In this algorithm whenever a point (pixel) is scanned, the k direction codes between the two sides of the point, which is on the edge of an object, are obtained by k-step forward and backward boundary tracking. A comer is determined by the sum of the difference between the two weighted code chains. Note that the whole chain code sequence or boundary of an object is not necessary to be extracted at all in this algorithm, and the corners are obtained immediately once the image is scanned, furthermore, what humans perceive as corners can be detected and localized by this algorithm.
基金Beijing Higher Education and Teaching Project(No.2014-ms148)
文摘In order to improve the edge detection precision of miniature parts in microscopic field of viewa sub-pixel edge detectionalgorithm combining non-orthogonal quadratic B-spline wavelet transform algorithm and Zernike moment algorithm is proposed.Non-orthogonal quadratic B-spline wavelet transform algorithm is adopted to get the pixel edge of miniature parts?andthe moment invariant of Zernike moment algorithm is used for refining the pixel edge to get sub-pixel edges.A real-time detectionsystem based on the proposed algorithm for miniature parts is established.The general system structure and operational principle are given,the real-time image acquisition and detection are completed,the results of edge detection are analyzed and the detection precision is evaluated.The results show that parts size can be0.01-10mm and the detection precision reaches0.01%-0.1%.Therefore,the edge of the miniature parts can be accurately identified and the detection precision can be improved to sub-pixel level,which meets the requirements of miniature parts precision detection.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.