期刊文献+
共找到543篇文章
< 1 2 28 >
每页显示 20 50 100
Borehole-GPR numerical simulation of full wave field based on convolutional perfect matched layer boundary 被引量:7
1
作者 朱自强 彭凌星 +1 位作者 鲁光银 密士文 《Journal of Central South University》 SCIE EI CAS 2013年第3期764-769,共6页
The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) appr... The absorbing boundary is the key in numerical simulation of borehole radar.Perfect match layer(PML) was chosen as the absorbing boundary in numerical simulation of GPR.But CPML(convolutional perfect match layer) approach that we have chosen has the advantage of being media independent.Beginning with the Maxwell equations in a two-dimensional structure,numerical formulas of finite-difference time-domain(FDTD) method with CPML boundary condition for transverse electric(TE) or transverse magnetic(TM) wave are presented in details.Also,there are three models for borehole-GPR simulation.By analyzing the simulation results,the features of targets in GPR are obtained,which can provide a better interpretation of real radar data.The results show that CPML is well suited for the simulation of borehole-GPR. 展开更多
关键词 borehole-GPR numerical simulation convolutional perfect match layer finite-difference time-domain method
在线阅读 下载PDF
Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method 被引量:1
2
作者 王玥 王建国 陈再高 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期128-136,共9页
Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open... Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. 展开更多
关键词 enlarged cell technique CONFORMAL finite-difference time-domain convolutional perfectlymatched layer
原文传递
An improved convolution perfectly matched layer for elastic second-order wave equation 被引量:3
3
作者 Yang Ling-Yun Wu Guo-Chen +1 位作者 Li Qing-Yang Liang Zhan-Yuan 《Applied Geophysics》 SCIE CSCD 2021年第3期317-330,432,共15页
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t... A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary. 展开更多
关键词 convolutional perfectly matched layer absorbing boundary conditions second-order elastic wave equation numerical simulation
在线阅读 下载PDF
Median Filtering Detection Based on Quaternion Convolutional Neural Network
4
作者 Jinwei Wang Qiye Ni +4 位作者 Yang Zhang Xiangyang Luo Yunqing Shi Jiangtao Zhai Sunil Kr Jha 《Computers, Materials & Continua》 SCIE EI 2020年第10期929-943,共15页
Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics.Therefore,more attention has been paid to the forensics research of median filtering.In this paper,... Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics.Therefore,more attention has been paid to the forensics research of median filtering.In this paper,a median filtering forensics method based on quaternion convolutional neural network(QCNN)is proposed.The median filtering residuals(MFR)are used to preprocess the images.Then the output of MFR is expanded to four channels and used as the input of QCNN.In QCNN,quaternion convolution is designed that can better mix the information of different channels than traditional methods.The quaternion pooling layer is designed to evaluate the result of quaternion convolution.QCNN is proposed to features well combine the three-channel information of color image and fully extract forensics features.Experiments show that the proposed method has higher accuracy and shorter training time than the traditional convolutional neural network with the same convolution depth. 展开更多
关键词 Median filtering forensics quaternion convolution layer quaternion pooling layer color image
在线阅读 下载PDF
DISCRETE SINGULAR CONVOLUTION METHOD WITH PERFECTLY MATCHED ABSORBING LAYERS FOR THE WAVE SCATTERING BY PERIODIC STRUCTURES
5
作者 Feng Lixin Jia Niannian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第2期138-152,共15页
A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is uti... A new computational algorithm is introduced for solving scattering problem in periodic structure. The PML technique is used to deal with the difficulty on truncating the unbounded domain while the DSC algorithm is utilized for the spatial discretization. The present study reveals that the method is efficient for solving the problem. 展开更多
关键词 Maxwell's equations periodic structures perfect matched layer (PMI) discrete singular convolution (DSC)
在线阅读 下载PDF
Ozone Depletion Identification in Stratosphere Through Faster Region-Based Convolutional Neural Network
6
作者 Bakhtawar Aslam Ziyad Awadh Alrowaili +3 位作者 Bushra Khaliq Jaweria Manzoor Saira Raqeeb Fahad Ahmad 《Computers, Materials & Continua》 SCIE EI 2021年第8期2159-2178,共20页
The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place i... The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques. 展开更多
关键词 Deep learning image processing CLASSIFICATION climate variation ozone layer depleted region non-depleted region UV radiation faster region-based convolutional neural network
在线阅读 下载PDF
A Method to Extract Task-Related EEG Feature Based on Lightweight Convolutional Neural Network
7
作者 Qi Huang Jing Ding Xin Wang 《Neuroscience Bulletin》 CSCD 2024年第12期1915-1930,共16页
Unlocking task-related EEG spectra is crucial for neuroscience.Traditional convolutional neural networks(CNNs)effectively extract these features but face limitations like overfitting due to small datasets.To address t... Unlocking task-related EEG spectra is crucial for neuroscience.Traditional convolutional neural networks(CNNs)effectively extract these features but face limitations like overfitting due to small datasets.To address this issue,we propose a lightweight CNN and assess its interpretability through the fully connected layer(FCL).Initially tested with two tasks(Task 1:open vs closed eyes,Task 2:interictal vs ictal stage),the CNN demonstrated enhanced spectral features in the alpha band for Task 1 and the theta band for Task 2,aligning with established neurophysiological characteristics.Subsequent experiments on two brain-computer interface tasks revealed a correlation between delta activity(around 1.55 Hz)and hand movement,with consistent results across pericentral electroencephalogram(EEG)channels.Compared to recent research,our method stands out by delivering task-related spectral features through FCL,resulting in significantly fewer trainable parameters while maintaining comparable interpretability.This indicates its potential suitability for a wider array of EEG decoding scenarios. 展开更多
关键词 convolutional neural network Fully connected layer INTELLIGIBILITY ELECTROENCEPHALOGRAM
原文传递
Artificial intelligence-aided endoscopic in-line particle size analysis during the pellet layering process
8
作者 Orsolya Péterfi Nikolett Kállai-Szabó +6 位作者 KincsöRenáta Demeter Ádám Tibor Barna István Antal Edina Szabó Emese Sipos Zsombor Kristóf Nagy Dorián LászlóGalata 《Journal of Pharmaceutical Analysis》 2025年第8期1753-1764,共12页
In this study,an artificial intelligence-based machine vision system was developed for in-line particle size analysis during the pellet layering process.Drug-layered pellets were produced by coating microcrystalline c... In this study,an artificial intelligence-based machine vision system was developed for in-line particle size analysis during the pellet layering process.Drug-layered pellets were produced by coating microcrystalline cellulose cores with an ibuprofen-containing layering liquid until the target drug content was achieved.Drug content increases with pellet size;therefore,particle size monitoring can ensure product safety and quality.The direct imaging system,consisting of a rigid endoscope,a light source,and a high-speed camera,provides real-time information about pellet size and layer uniformity,enabling timely intervention in the case of out-of-spec products.A convolutional neural network-based instance segmentation algorithm was employed to detect particles in focus,ensuring that pellet size could be accurately determined despite the dense flow of the particles.After training the model,the performance of the developed system was assessed by analysing the particle size distribution of pellet cores with variable sizes within the 250 e850 mm size range.The endoscopic system was tested in-line at a larger scale during the drug layering of inert pellet cores.The particle size data acquired in real time with the endoscopic imaging system corresponded with the reference methods,demonstrating the feasibility of the proposed machine vision-based method as a process analytical technology tool for in-line process monitoring. 展开更多
关键词 Machine vision convolutional neural networks In-line monitoring ENDOSCOPE Particle size distribution Pellet layering Process analytical technology
暂未订购
基于FaceNet的人脸识别算法研究
9
作者 季丹 《电子设计工程》 2026年第1期145-149,共5页
为了提高人脸识别的性能,提出基于FaceNet的人脸识别算法。该算法的多任务级联卷积层通过卷积和反卷积操作处理人脸图像,提取人脸特征图像块;将提取结果输入FaceNet层后,经过归一化处理并利用三元组损失函数微调该图像块,提取人脸图像... 为了提高人脸识别的性能,提出基于FaceNet的人脸识别算法。该算法的多任务级联卷积层通过卷积和反卷积操作处理人脸图像,提取人脸特征图像块;将提取结果输入FaceNet层后,经过归一化处理并利用三元组损失函数微调该图像块,提取人脸图像块深度特征参数;利用风格池化层和风格整合层的人脸特征,清晰刻画特征参数风格;将包含风格的特征参数输入至全连接层形成全局的特征表示,最终在联合损失函数的优化下,通过Softmax分类器输出人脸识别结果。实验结果表明,该方法在不同图像大小下均能可靠提取人脸特征,余弦相似度均在0.94~0.97之间;在人脸遮挡和多人脸场景下,均能较好地完成人脸识别。 展开更多
关键词 多任务级联卷积层 风格池化层 深度特征参数 风格整合层 损失函数
在线阅读 下载PDF
基于图注意力堆叠自编码器微生物-药物关联预测
10
作者 王波 何洋 +3 位作者 杜晓昕 张剑飞 徐靖然 贾娜 《北京航空航天大学学报》 北大核心 2026年第1期61-72,共12页
传统方法发掘微生物与药物新关联主要通过生物实验完成,耗费时间且开销极大。基于此,提出基于图注意力堆叠自编码器微生物与药物关联预测方法 GATSAE。建立微生物与药物异构网络,丰富关联信息;通过图卷积网络(GCN)提取多层潜在特征,得... 传统方法发掘微生物与药物新关联主要通过生物实验完成,耗费时间且开销极大。基于此,提出基于图注意力堆叠自编码器微生物与药物关联预测方法 GATSAE。建立微生物与药物异构网络,丰富关联信息;通过图卷积网络(GCN)提取多层潜在特征,得到微生物和药物的卷积融合矩阵;采用改进的堆叠自编码器学习有意义的高阶相似特征的无监督低维表示,在堆叠自编码器的基础上追加图卷积和注意力机制,进一步优化高阶特征信息的提取;将低维特征与关联特征串联,使用多层感知机(MLP)对最终的微生物-药物进行评分预测。通过效能评估,GATSAE方法的受试者工作特征曲线下面积(AUROC)及精确率-召回率曲线下面积(AUPR)分别达到0.961 9和0.957 7,优于经典的机器学习方法和常见的深度学习方法。案例研究表明,GATSAE方法能够准确预测到与SARS-CoV-2、大肠杆菌相关的候选药物,以及与阿司匹林相关的候选微生物。 展开更多
关键词 微生物与药物 关联预测 堆叠自编码器 注意力机制 图卷积网络 多层感知机
原文传递
基于注意力和线性层融合的动态图卷积交通量预测模型
11
作者 尉辉 肖洪波 +4 位作者 邹北骥 奎晓燕 肖捡花 和佳聚 合尼古力 《大数据》 2026年第1期126-145,共20页
交通量的精准预测是优化路网运行效率、缓解城市交通拥堵的关键。针对传统模型依赖预定义静态图结构、难以捕捉动态时空相关性以及单一时间尺度建模难以全面提取多尺度特征的问题,提出了双重动态自适应时空建模框架。该框架在时间维度... 交通量的精准预测是优化路网运行效率、缓解城市交通拥堵的关键。针对传统模型依赖预定义静态图结构、难以捕捉动态时空相关性以及单一时间尺度建模难以全面提取多尺度特征的问题,提出了双重动态自适应时空建模框架。该框架在时间维度采用动态时间特征提取多头注意力机制,自适应调整时序权重以捕捉关键动态特征;在空间维度设计动态图卷积网络,通过自注意力机制实时生成邻接矩阵,以表征节点间动态空间依赖关系,从而实现时空双重动态协同建模。此外,该框架引入可学习的线性融合层,自适应整合多时间尺度预测结果,协同优化局部与全局特征表达。在真实道路数据集上的实验表明,该框架显著优于基线模型,验证了其优越的时空特征捕捉与预测性能。 展开更多
关键词 交通量预测 动态时间特征提取多头注意力机制 动态图卷积 线性层融合
在线阅读 下载PDF
基于深度学习的多频带通信干扰信号滤除方法
12
作者 姜育生 宋凯 《电子设计工程》 2026年第1期170-174,共5页
为解决复杂多变干扰环境下多频带通信质量受干扰信号显著影响且难以获得理想滤除效果的问题,研究基于深度学习算法的多频带通信干扰信号滤除方法。基于联合平移不变空间模型,分析多频带通信系统的信号特性,构建多频带通信模型。从多频... 为解决复杂多变干扰环境下多频带通信质量受干扰信号显著影响且难以获得理想滤除效果的问题,研究基于深度学习算法的多频带通信干扰信号滤除方法。基于联合平移不变空间模型,分析多频带通信系统的信号特性,构建多频带通信模型。从多频带模型中采集通信信号作为输入数据,输入到深度残差神经网络中进行处理。在神经网络架构中,卷积层采用滑动窗口机制,通过卷积操作生成干扰信号的特征图,将这些特征图传递至残差单元。残差单元对干扰信号进行全局特征映射,并将映射后的处理结果传递至全连接层。在全连接层,通过softmax函数对特征映射结果进行归一化处理,并利用L2损失函数优化网络训练过程。利用训练完成的深度残差神经网络,实现对多频带通信中干扰信号的有效滤除。实验结果表明,该方法不仅能够有效滤除干扰信号,而且滤除后的信噪比高达12 dB以上,同时噪声衰减因子保持在0.7以上。 展开更多
关键词 深度学习算法 多频带 通信干扰信号 滤除方法 残差单元 卷积层
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:2
13
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) layer counting Multi-source fusion
在线阅读 下载PDF
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network 被引量:1
14
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 Multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
在线阅读 下载PDF
基于跳跃连接神经网络的无监督弱光图像增强算法 被引量:2
15
作者 刘洋 刘思瑞 +1 位作者 徐晓淼 王竹筠 《电子测量与仪器学报》 北大核心 2025年第5期208-216,共9页
针对Zero-DCE网络存在细节丢失和不同亮度区域处理结果出现差异等问题,设计了一种基于增强深度曲线估计网络(EnDCE-Net)的无监督弱光图像增强算法。通过探索弱光图像与未配对的正常光照图像之间的潜在映射关系,实现了对低光照场景下图... 针对Zero-DCE网络存在细节丢失和不同亮度区域处理结果出现差异等问题,设计了一种基于增强深度曲线估计网络(EnDCE-Net)的无监督弱光图像增强算法。通过探索弱光图像与未配对的正常光照图像之间的潜在映射关系,实现了对低光照场景下图像质量的显著改善。首先,提出新的特征提取网络,该网络整合了多个跳跃连接与卷积层,实现低层与高层特征的有效融合,从而学习到弱光图像中的关键特征,增强网络对弱光图像的学习能力。其次,设计一组联合的无参考损失函数,强调优化过程中与亮度相关的特性,从而更有利于图像增强模型的参数更新,提高图像增强的质量和效果。为了验证所提出算法的有效性,在5个公开数据集上进行了对比实验,与次优算法Zero-DCE相比,有参考数据集SICE上的峰值信噪比(PSNR)和结构相似性(SSIM)分别提升了9.4%、21%。无参考数据集LIME、DICM、MEF、NPE上NIQE分别达到了4.04、3.04、3.35、3.83。实验结果表明,所提出算法表现出色,增强后的图像色彩自然,亮度均衡且细节清晰。无论是主观视觉评价还是客观定量指标,均显著优于对比算法,充分体现了在图像增强效果上的卓越性和先进性。 展开更多
关键词 弱光图像增强 深度曲线估计 无参考损失函数 多层卷积神经网络 无监督学习
原文传递
基于改进YOLOv7-tiny的车辆目标检测算法 被引量:3
16
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 YOLOv7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
融合多尺度特征的航拍目标检测算法 被引量:1
17
作者 杨路 裴俊莹 《系统仿真学报》 北大核心 2025年第6期1486-1498,共13页
为解决无人机航拍图像中小目标样本居多,但可提取特征信息少,不利于提升航拍目标检测精度问题,提出一种基于YOLOv8s改进的航拍小目标检测算法。将可变形卷积应用于主干网络特征提取模块,自适应感受目标在不同位置和尺度上的细节信息;提... 为解决无人机航拍图像中小目标样本居多,但可提取特征信息少,不利于提升航拍目标检测精度问题,提出一种基于YOLOv8s改进的航拍小目标检测算法。将可变形卷积应用于主干网络特征提取模块,自适应感受目标在不同位置和尺度上的细节信息;提出包含特征收集模块和信息融合模块的多层次信息融合功能块,通过多层次信息融合功能块中的特征收集模块对主干网络不同尺度的特征信息进行提取和增强,获取精细的全局特征,利用信息融合模块将上下文丰富的语义信息注入到小目标检测层,实现局部信息和全局信息的融合,并将融合后的特征输入到检测网络中,得到检测结果。结果表明:所提算法的识别平均准确率和召回率相较于基线模型提升了6%和4.3%;相比于主流的检测算法,改进目标检测算法的小目标检测平均精度最高。 展开更多
关键词 航拍图像 可变形卷积 小目标检测 多尺度特征融合 目标检测层
原文传递
网络动态入侵多层特征最优检测方法仿真 被引量:1
18
作者 卢庆武 赖坤宁 《计算机仿真》 2025年第6期379-383,共5页
受到网络数据流等节点动态变化的影响,节点特征向量中的时间序列信息较多,在进行入侵检测时无法聚焦至关键信息片段,节点特征学习难度较大,影响入侵检测的可靠性。提出一种基于多层BiLSTM的网络动态入侵在线检测方法。通过RELIEF-F算法... 受到网络数据流等节点动态变化的影响,节点特征向量中的时间序列信息较多,在进行入侵检测时无法聚焦至关键信息片段,节点特征学习难度较大,影响入侵检测的可靠性。提出一种基于多层BiLSTM的网络动态入侵在线检测方法。通过RELIEF-F算法对各个特征的权重展开计算,筛选冗余特征,在筛选后的特征集合中采用改进粒子群算法搜索最优特征子集;利用层叠多个图卷积层来学习节点的特征表示,提取有利用价值的图结构信息作为整个图的特征向量,并且利用融入注意力机制的BiLSTM模型展开训练,同时结合特征信息实现网络动态入侵在线检测。实验结果表明,所提方法能够准确识别出4个时间段的异常流量,对口令入侵、远程控制入侵和木马入侵三种动态入侵行为的漏检率均不超过2.0%,说明上述方法可有效检测出网络动态入侵行为,检测结果较为准确果,并具有较高的可靠性。 展开更多
关键词 网络动态入侵 图卷积层 特征子集 注意力机制
在线阅读 下载PDF
融合空间信息和自适应特征感知的多尺度红外目标检测
19
作者 何自芬 彭伟 +3 位作者 张印辉 陈光晨 薛金生 张麒 《红外与激光工程》 北大核心 2025年第12期278-293,共16页
红外检测技术能在低光照或夜间环境中通过感知目标的热辐射特性实现成像,能为智能交通与城市安防提供全天候监测能力。针对红外图像目标尺度变化大、纹理特征表征困难的问题,提出融合空间信息和自适应特征感知的红外多尺度目标检测模型... 红外检测技术能在低光照或夜间环境中通过感知目标的热辐射特性实现成像,能为智能交通与城市安防提供全天候监测能力。针对红外图像目标尺度变化大、纹理特征表征困难的问题,提出融合空间信息和自适应特征感知的红外多尺度目标检测模型。首先,利用多尺度卷积核和全局信息感知结构,构建空间信息协同注意力模块,以实现局部细节和全局结构特征信息融合,增强对不同尺度特征的表征能力;其次,为了缓解深层网络中细节信息丢失,通过跨尺度连接策略构建跨层特征融合金字塔架构,以融合浅层与深层特征,增强对小尺度目标特征的捕捉能力。最后,提出自适应特征感知模块动态调整特征采样区域,使模型聚焦在目标核心区域,实现精细纹理特征的捕捉;在红外航拍交通数据集上的实验结果表明,所提模型的mAP50和mAP50~95检测精度分别为88.1%和58.5%,较基准网络YOLOv8 n分别提升了4.1%和4.5%,其中Person类、Cyclist类和Bike类的检测精度提升显著,mAP50分别提升了7%、6.9%和4.2%,且在HIT-UA V和FLI R两个红外数据集上的实验结果也表明所提模型具有更好的检测性能,从而验证了文中模型能够有效实现对多尺度红外目标的检测。 展开更多
关键词 多尺度红外目标 空间信息 多尺度卷积核 跨层特征融合 自适应特征感知
原文传递
改进的YOLOv8无人机小目标检测算法
20
作者 王燕妮 张婧菲 《探测与控制学报》 北大核心 2025年第5期44-50,共7页
针对YOLOv8算法在无人机视角下小目标性能不佳的问题,提出一种改进后的YOLOv8-NDTiny算法。改进原有的CIoU损失函数,引入NWD损失函数,提高算法对于小目标的敏感度;在保持算法原有参数量的同时,将原有C2f模块中的卷积模块替换成可变形卷... 针对YOLOv8算法在无人机视角下小目标性能不佳的问题,提出一种改进后的YOLOv8-NDTiny算法。改进原有的CIoU损失函数,引入NWD损失函数,提高算法对于小目标的敏感度;在保持算法原有参数量的同时,将原有C2f模块中的卷积模块替换成可变形卷积,使得模型能够适应复杂的场景;优化了颈部结构,将原有的检测头替换成小目标检测层,使模型更加轻量化,并提高网络对小目标的感知能力。实验数据表明,改进后的算法相比原算法在VisDrone2019数据集上mAP@0.5和mAP@0.5:0.95分别提高了2.4%和1.8%,并且参数量为原先的71%。 展开更多
关键词 小目标检测 NWD损失函数 小目标检测层 可变形卷积
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部