The research on the hydrodynamics of blades is mainly focused on sea areas with high-speed current.However,the average velocity in most territorial waters of China is smaller than 1 m/s,and the lift type of airfoil bl...The research on the hydrodynamics of blades is mainly focused on sea areas with high-speed current.However,the average velocity in most territorial waters of China is smaller than 1 m/s,and the lift type of airfoil blades has limited application in most of these conditions.Therefore,it is of great significance to study the tidal current energy capture of blades in sub-low speed sea areas.The effect of flow impact resistance on the blade at sub-low current speed is considered and a new type of thin-walled blade based on the lift type of blade is proposed,and then the lift-impact combined hydrodynamic model of horizontal axis blade is established.Based on this model,and considering the characteristics of tidal current and velocity in the sea area of Yushan Islands,simulation and optimization of blade design are carried out.Additionally,the horizontal axis thin-walled blade and the NACA airfoil contrast blade under the same conditions are developed.By using a synthetical experimental test system,the power,torque,rotational speed and load characteristics of these two blades are tested.The performance of the thin-walled blade and the design theory are verified.It shows that this type of blade has much better energy capture efficiency in the sub-low speed sea area.This research will promote the study and development of turbines that can be used in low-speed current sea areas in the future.展开更多
Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement...Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.展开更多
基金This work was financially supported by the Special Funds of the State Oceanic Administration(Grant No.NBME2011CL02)Ningbo Major Science and Technology Public Relations Project(Grant No.2015C110015)Ningbo Natural Science Foundation Project(Grant No.2014A610091).
文摘The research on the hydrodynamics of blades is mainly focused on sea areas with high-speed current.However,the average velocity in most territorial waters of China is smaller than 1 m/s,and the lift type of airfoil blades has limited application in most of these conditions.Therefore,it is of great significance to study the tidal current energy capture of blades in sub-low speed sea areas.The effect of flow impact resistance on the blade at sub-low current speed is considered and a new type of thin-walled blade based on the lift type of blade is proposed,and then the lift-impact combined hydrodynamic model of horizontal axis blade is established.Based on this model,and considering the characteristics of tidal current and velocity in the sea area of Yushan Islands,simulation and optimization of blade design are carried out.Additionally,the horizontal axis thin-walled blade and the NACA airfoil contrast blade under the same conditions are developed.By using a synthetical experimental test system,the power,torque,rotational speed and load characteristics of these two blades are tested.The performance of the thin-walled blade and the design theory are verified.It shows that this type of blade has much better energy capture efficiency in the sub-low speed sea area.This research will promote the study and development of turbines that can be used in low-speed current sea areas in the future.
文摘Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.