Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata ...Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.展开更多
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ...Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF.展开更多
Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks,...Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.展开更多
In Southwestern China,the development of karst landforms and planation surfaces is closely related to local tectonics,fluvial incision,and base level changes,and climate changes.However,researches on when these karst ...In Southwestern China,the development of karst landforms and planation surfaces is closely related to local tectonics,fluvial incision,and base level changes,and climate changes.However,researches on when these karst landforms and planation surfaces formed and how they evolved along drainage development are scarce.Fortunately,horizontal caves with numerous fluvial deposits in high karst mountains can be served as time markers in landform evolution.Here we select large horizontal caves to perform studies of geomorphology,sedimentology,and geochronology.Fieldwork revealed that more than 25 km long horizontal cave passages are perched 1500 m higher than the local base level,but filled with several phases of fluvial sediments and breakdown slabs.The first phase of fluvial gravels and related cave drainage was dated back to 6.4 Ma using cosmogenic nuclide burial dating,and the stalagmite covering the cave collapse was dated by the U-Pb method to be older than 1.56 Ma.These results show that the continuous horizontal cave drainage system and the planation surface were developed before the Late Miocene.The lowering process of the base level as a result of the sharp fluvial incision and water level lowering,along with the regional uplift,led to the abandonment of the horizontal cave and the elevated planation surface at the Late Miocene.After that,the phase of cave collapse,thick fluvial sand,and clay sediments in the recharge of cave areas were deposited at around 1.6 Ma and during the Middle Pleistocene,respectively.Subsequently,speleothems were widely deposited on the collapse and clay sediments during the period from 600 to 90 ka,whereas the deposition of cave fluvial sediments terminated suddenly.The tectonic could control the denudation of surface caprocks and the development of karst conduits before the Late Miocene,whereas the river incision acted as the main driver for the base level lowering and the destruction of the horizontal cave drainage at high altitudes.In addition,the rapid incision and retreat of Silurian gorges finally caused the formation of karst mesas in the Middle Pleistocene.展开更多
This multidisciplinary study integrates structural and cave mapping,3D geological modeling,and Geographical Information System(GIS)analysis to provide constraints of the hydrogeological model for the central Lefka Ori...This multidisciplinary study integrates structural and cave mapping,3D geological modeling,and Geographical Information System(GIS)analysis to provide constraints of the hydrogeological model for the central Lefka Ori Massif.Through 44 km of linear mapping,we discovered the new mid-Miocene Pachnes Thrust(PT)which plays a key role in the central Lefka Ori Massif structural framework.展开更多
Caves located in the buried hill reservoir of granite bedrock in Bongor Basin,Chad,are excessively small and cannot be identifi ed in conventional refl ection wave imaging profi les because their refl ection character...Caves located in the buried hill reservoir of granite bedrock in Bongor Basin,Chad,are excessively small and cannot be identifi ed in conventional refl ection wave imaging profi les because their refl ection characteristics are suppressed by the strong refl ection of the weathering crust at the top of the buried hill.In contrast to refl ection wave imaging,which refl ects the refl ection characteristics of continuous interfaces,scattered wave imaging refl ects the reflection characteristics of discontinuous geological bodies.Scattering waves can be produced in the presence of discontinuous points,such as karst caves,fractures,and stratum vanishing points.Scattering imaging can accurately provide the location of discontinuous abnormal bodies,highlight the seismic reflection characteristics of caves with weak reflections,and eliminate continuous strong reflections to strengthen the ability of seismic data to distinguish discontinuous geological bodies and solve the inability of seismic data from conventional poststack refl ection wave imaging to identify small caves in buried hills.Three-parameter wavelet spectral decomposition technology is used to depict the boundary of caves accurately in accordance with the strong energy spectral characteristics of caves in the section of the scattering imaging seismic data of the granite bedrock buried hill reservoir.Compared with the attributes extracted from conventional refl ection wave poststack seismic data,those acquired from scattering imaging bodies are more reliable and consistent with the actual location of caves on boreholes and have higher resolution.For connected wells,the attributes extracted from the conventional poststack seismic data can only predict whether caves are developed,whereas those calculated from scattering imaging can not only predict whether caves are present but also refl ects the degree of cave development.On the plane,the attributes obtained from scattering imaging calculation are more consistent with the geological law of cave development.On the basis of this fi nding and in accordance with the results of the three-parameter wavelet spectral decomposition of scattering imaging seismic data,the degree of cave development is classifi ed,and the favorable location for reservoir development in the study area is identifi ed.This solution provides an eff ective way to improve the exploration accuracy of cave-type granite buried hill reservoirs.展开更多
To address issues such as inefficient top-coal drawing,challenges in simultaneously mining and drawing,and the need for intelligent control in extra-thick coal seams,this study examines the principles of top-coal draw...To address issues such as inefficient top-coal drawing,challenges in simultaneously mining and drawing,and the need for intelligent control in extra-thick coal seams,this study examines the principles of top-coal drawing and explores automation and intelligent equipment solutions within the framework of the group coal drawing method.Numerical simulations were performed to investigate the impact of the Number of Drawing Openings(NDO)and rounds on top-coal recovery,coal draw-ing efficiency,and Top Coal Loss(TCL)mechanism.Subsequently,considering the recovery and coal drawing efficiency and by introducing the instantaneous gangue content and cumulative gangue content in simulations,the top-coal recovery,gangue content,and coal loss distribution when considering excessive coal drawing were analyzed.This established a foun-dation for determining the optimal NDO and shutdown timing.Finally,the key technical principle and automated control of a shock vibration and hyperspectral fusion recognition device were detailed,and an intelligent coal drawing control method based on this technology was developed.This technology enabled the precise control of the instantaneous gangue content(35%)during coal drawing.The top-coal recovery at the Tashan Mine 8222 working face increased by 14.78%,and the gangue content was controlled at~9%,consistent with the numerical simulation results.Thus,the reliability of the numerical simulation results was confirmed to a certain extent.Meanwhile,the single-group drawing method significantly enhanced the production capacity of the 8222 working face,achieving an annual output of 15 million tons.展开更多
The existence of an intensifying shift in the East Asian summer monsoon(EASM)since~2000 years ago that differs from the decreasing trend of Northern Hemisphere summer insolation remains controversial.Therefore,we comp...The existence of an intensifying shift in the East Asian summer monsoon(EASM)since~2000 years ago that differs from the decreasing trend of Northern Hemisphere summer insolation remains controversial.Therefore,we compared and synthesized stalagmiteδ^(18)O records from eastern China to clarify the EASM trend during this period.A total of 30 caveδ^(18)O records that did not consistently indicate a depleted trend during 2-0 ka.Rather,they included increasing(14 caves),decreasing(8 caves),and non-significant(8 caves)trends.The spatially interpolated trends of caveδ^(18)O suggested spatial differences among three subregions:North China(NC),decreasing trend(5 caves);Central-East China/Yangtze River Valley(CEC),increasing trend(17 caves);South China(SC),decreasing trend(8 caves).The caveδ^(18)O evidence supports spatial differences in precipitation in eastern China that have been substantially demonstrated by observations and model simulations.The decreasingδ^(18)O anomaly from NC and SC was associated with the decreasing sea surface temperature over Pacific Decadal Oscillation region and increasing South Oscillation Index.The increasing CECδ^(18)O anomaly was linked to southward Intertropical Convergence Zone shift and decreasing solar irradiance.Consequently,EASM circulation is jointly forced by external and internal factors at various timescales.展开更多
The chief objective of the article is to learn the spatial characteristics of stress distribution around a shallow buried cylinder Karst cave in limestone strata.Firstly,taking into account the geometry of limestone f...The chief objective of the article is to learn the spatial characteristics of stress distribution around a shallow buried cylinder Karst cave in limestone strata.Firstly,taking into account the geometry of limestone formations,and the characteristics of Karst geomorphology in China,a spatial axialsymmetrical hollow model was established.Concurrently,combining available work and the concept of elasticity,the boundary conditions are determined.Subsequently,Love displacement method was introduced,the expressions of stress components were gained.The diagram characteristics of each stress component are summarized,which are affected by various influencing factors.Finally,in order to prove the rationality of the general solution,numerical simulation was carried out on the basis of practical engineering,and the maximum error is less than 5%.Thus,the analytical solution could represent the spatial characteristics of stress distribution around a shallow buried cylinder Karst cave in limestone strata.展开更多
Mollusks, arthropods and chordates which were visible to the naked eye were observed and collected in Dongbei and Shuijiang caves of Libo county five times between February and July from 2002 to 2005. Four hundred and...Mollusks, arthropods and chordates which were visible to the naked eye were observed and collected in Dongbei and Shuijiang caves of Libo county five times between February and July from 2002 to 2005. Four hundred and forty samples from Dongbei Cave were classified into three phyla, five classes, 10 orders, 20 families and 39 species or groups of species. Four hundred and ninety-eight samples from Shuijiang Cave were classified into three phyla, six classes, 11 orders, 20 families and 25 species or groups of species. Six animal communities were identified in the light belt of the two caves according to their species types and numbers of individuals in the light belt of two cave. The communities which have the highest values of species richness community diversity, maximum diversity, evenness, dominance and community similarity are respectively: B (4. 1059), H (2.4716), B (3.3322), E (0.9042), C (0.3442) and A - C (0. 5251). The community diversity and correlation of environmental factors were also studied. The temperature, humidity, content of CO2 and N2, content of organic matter and some inorganic salts in soil were analyzed by Pearson correlation. The results showed that the content of organic matter in soil is positively related to species number, species richness and maximum community diversity, with correlations of 0. 885, 0.909, 0. 868 respectively (two-tailed significance test, P ≤ 0. 05), and significantly positively related to diversity, with the coefficient of 0.611, (two-tailed significance test, P ≤ 0. 1). This suggests that the content of organic matter in soil is one of the important elements influencing the community variation of cave animals. Outside the cave, temperature and humidity are important factors impacting on community diver- sity. As the temperature in all seasons in the cave is stable and the humidity is always high (above 90% ), the temperature and humidity have weak correlation to community diversity in caves.展开更多
文摘Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.
基金the National Science Foundation of China(50674046)National Science Important Foundation(50634050)Hunan Science Foundation(06JJ50092)
文摘Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF.
基金provided by the independent research subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No. CXZZ13_0947)
文摘Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.
基金supported by the foundation of the Institute of Karst Geology,Chinese Academy of Geological Sciences(Nos.201317,2014005,2014034,2016011)National Natural Science Foundation of China(No.41270226)。
文摘In Southwestern China,the development of karst landforms and planation surfaces is closely related to local tectonics,fluvial incision,and base level changes,and climate changes.However,researches on when these karst landforms and planation surfaces formed and how they evolved along drainage development are scarce.Fortunately,horizontal caves with numerous fluvial deposits in high karst mountains can be served as time markers in landform evolution.Here we select large horizontal caves to perform studies of geomorphology,sedimentology,and geochronology.Fieldwork revealed that more than 25 km long horizontal cave passages are perched 1500 m higher than the local base level,but filled with several phases of fluvial sediments and breakdown slabs.The first phase of fluvial gravels and related cave drainage was dated back to 6.4 Ma using cosmogenic nuclide burial dating,and the stalagmite covering the cave collapse was dated by the U-Pb method to be older than 1.56 Ma.These results show that the continuous horizontal cave drainage system and the planation surface were developed before the Late Miocene.The lowering process of the base level as a result of the sharp fluvial incision and water level lowering,along with the regional uplift,led to the abandonment of the horizontal cave and the elevated planation surface at the Late Miocene.After that,the phase of cave collapse,thick fluvial sand,and clay sediments in the recharge of cave areas were deposited at around 1.6 Ma and during the Middle Pleistocene,respectively.Subsequently,speleothems were widely deposited on the collapse and clay sediments during the period from 600 to 90 ka,whereas the deposition of cave fluvial sediments terminated suddenly.The tectonic could control the denudation of surface caprocks and the development of karst conduits before the Late Miocene,whereas the river incision acted as the main driver for the base level lowering and the destruction of the horizontal cave drainage at high altitudes.In addition,the rapid incision and retreat of Silurian gorges finally caused the formation of karst mesas in the Middle Pleistocene.
基金funded by IUGS and UNESCO through the IGCP-715 initiativethe collection of rock samples and topographical data.Special recognition goes to the Sternes Cave Expeditions(2018–2023)the Gourgouthakas Expedition(2022)and the Lion Expeditions(2013–2015)for their substantial contributions.
文摘This multidisciplinary study integrates structural and cave mapping,3D geological modeling,and Geographical Information System(GIS)analysis to provide constraints of the hydrogeological model for the central Lefka Ori Massif.Through 44 km of linear mapping,we discovered the new mid-Miocene Pachnes Thrust(PT)which plays a key role in the central Lefka Ori Massif structural framework.
文摘Caves located in the buried hill reservoir of granite bedrock in Bongor Basin,Chad,are excessively small and cannot be identifi ed in conventional refl ection wave imaging profi les because their refl ection characteristics are suppressed by the strong refl ection of the weathering crust at the top of the buried hill.In contrast to refl ection wave imaging,which refl ects the refl ection characteristics of continuous interfaces,scattered wave imaging refl ects the reflection characteristics of discontinuous geological bodies.Scattering waves can be produced in the presence of discontinuous points,such as karst caves,fractures,and stratum vanishing points.Scattering imaging can accurately provide the location of discontinuous abnormal bodies,highlight the seismic reflection characteristics of caves with weak reflections,and eliminate continuous strong reflections to strengthen the ability of seismic data to distinguish discontinuous geological bodies and solve the inability of seismic data from conventional poststack refl ection wave imaging to identify small caves in buried hills.Three-parameter wavelet spectral decomposition technology is used to depict the boundary of caves accurately in accordance with the strong energy spectral characteristics of caves in the section of the scattering imaging seismic data of the granite bedrock buried hill reservoir.Compared with the attributes extracted from conventional refl ection wave poststack seismic data,those acquired from scattering imaging bodies are more reliable and consistent with the actual location of caves on boreholes and have higher resolution.For connected wells,the attributes extracted from the conventional poststack seismic data can only predict whether caves are developed,whereas those calculated from scattering imaging can not only predict whether caves are present but also refl ects the degree of cave development.On the plane,the attributes obtained from scattering imaging calculation are more consistent with the geological law of cave development.On the basis of this fi nding and in accordance with the results of the three-parameter wavelet spectral decomposition of scattering imaging seismic data,the degree of cave development is classifi ed,and the favorable location for reservoir development in the study area is identifi ed.This solution provides an eff ective way to improve the exploration accuracy of cave-type granite buried hill reservoirs.
基金the Fundamental Research Funds for the Central Universities(2023YQTD02)National Key R&D Program of China(2023YFC2907501)。
文摘To address issues such as inefficient top-coal drawing,challenges in simultaneously mining and drawing,and the need for intelligent control in extra-thick coal seams,this study examines the principles of top-coal drawing and explores automation and intelligent equipment solutions within the framework of the group coal drawing method.Numerical simulations were performed to investigate the impact of the Number of Drawing Openings(NDO)and rounds on top-coal recovery,coal draw-ing efficiency,and Top Coal Loss(TCL)mechanism.Subsequently,considering the recovery and coal drawing efficiency and by introducing the instantaneous gangue content and cumulative gangue content in simulations,the top-coal recovery,gangue content,and coal loss distribution when considering excessive coal drawing were analyzed.This established a foun-dation for determining the optimal NDO and shutdown timing.Finally,the key technical principle and automated control of a shock vibration and hyperspectral fusion recognition device were detailed,and an intelligent coal drawing control method based on this technology was developed.This technology enabled the precise control of the instantaneous gangue content(35%)during coal drawing.The top-coal recovery at the Tashan Mine 8222 working face increased by 14.78%,and the gangue content was controlled at~9%,consistent with the numerical simulation results.Thus,the reliability of the numerical simulation results was confirmed to a certain extent.Meanwhile,the single-group drawing method significantly enhanced the production capacity of the 8222 working face,achieving an annual output of 15 million tons.
基金National Natural Science Foundation of China,No.42225105National Natural Science Foundation of China,No.42471177,No.42201175,No.41901099+1 种基金The Open Foundation of MOE Key Laboratory of Western China's Environmental System,Lanzhou Universitythe Fundamental Research Funds for the Central Universities,No.lzujbky-2022-kb04。
文摘The existence of an intensifying shift in the East Asian summer monsoon(EASM)since~2000 years ago that differs from the decreasing trend of Northern Hemisphere summer insolation remains controversial.Therefore,we compared and synthesized stalagmiteδ^(18)O records from eastern China to clarify the EASM trend during this period.A total of 30 caveδ^(18)O records that did not consistently indicate a depleted trend during 2-0 ka.Rather,they included increasing(14 caves),decreasing(8 caves),and non-significant(8 caves)trends.The spatially interpolated trends of caveδ^(18)O suggested spatial differences among three subregions:North China(NC),decreasing trend(5 caves);Central-East China/Yangtze River Valley(CEC),increasing trend(17 caves);South China(SC),decreasing trend(8 caves).The caveδ^(18)O evidence supports spatial differences in precipitation in eastern China that have been substantially demonstrated by observations and model simulations.The decreasingδ^(18)O anomaly from NC and SC was associated with the decreasing sea surface temperature over Pacific Decadal Oscillation region and increasing South Oscillation Index.The increasing CECδ^(18)O anomaly was linked to southward Intertropical Convergence Zone shift and decreasing solar irradiance.Consequently,EASM circulation is jointly forced by external and internal factors at various timescales.
基金supported by National Natural Science Foundation of China(42002293,52068019)Hainan Provincial Natural Science Foundation of China(520QN229,422RC599)+2 种基金Independent Innovation Fund Project of Tianjin University and Hainan University(KF2022⁃03)Scientific Research Startup Foundation of Hainan university(KYQD(2R)1969)Systematic Project of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(Three Gorges University),Ministry of Education(2020KDZ04).
文摘The chief objective of the article is to learn the spatial characteristics of stress distribution around a shallow buried cylinder Karst cave in limestone strata.Firstly,taking into account the geometry of limestone formations,and the characteristics of Karst geomorphology in China,a spatial axialsymmetrical hollow model was established.Concurrently,combining available work and the concept of elasticity,the boundary conditions are determined.Subsequently,Love displacement method was introduced,the expressions of stress components were gained.The diagram characteristics of each stress component are summarized,which are affected by various influencing factors.Finally,in order to prove the rationality of the general solution,numerical simulation was carried out on the basis of practical engineering,and the maximum error is less than 5%.Thus,the analytical solution could represent the spatial characteristics of stress distribution around a shallow buried cylinder Karst cave in limestone strata.
文摘Mollusks, arthropods and chordates which were visible to the naked eye were observed and collected in Dongbei and Shuijiang caves of Libo county five times between February and July from 2002 to 2005. Four hundred and forty samples from Dongbei Cave were classified into three phyla, five classes, 10 orders, 20 families and 39 species or groups of species. Four hundred and ninety-eight samples from Shuijiang Cave were classified into three phyla, six classes, 11 orders, 20 families and 25 species or groups of species. Six animal communities were identified in the light belt of the two caves according to their species types and numbers of individuals in the light belt of two cave. The communities which have the highest values of species richness community diversity, maximum diversity, evenness, dominance and community similarity are respectively: B (4. 1059), H (2.4716), B (3.3322), E (0.9042), C (0.3442) and A - C (0. 5251). The community diversity and correlation of environmental factors were also studied. The temperature, humidity, content of CO2 and N2, content of organic matter and some inorganic salts in soil were analyzed by Pearson correlation. The results showed that the content of organic matter in soil is positively related to species number, species richness and maximum community diversity, with correlations of 0. 885, 0.909, 0. 868 respectively (two-tailed significance test, P ≤ 0. 05), and significantly positively related to diversity, with the coefficient of 0.611, (two-tailed significance test, P ≤ 0. 1). This suggests that the content of organic matter in soil is one of the important elements influencing the community variation of cave animals. Outside the cave, temperature and humidity are important factors impacting on community diver- sity. As the temperature in all seasons in the cave is stable and the humidity is always high (above 90% ), the temperature and humidity have weak correlation to community diversity in caves.