The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) w...Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.展开更多
The accuracy of large eddy simulation(LES)is highly dependent on the performance of sub-grid scale(SGS)model.In the present paper,a dynamic cubic nonlinear sub-grid scale model(DCNM)proposed by Huang et al.is implemen...The accuracy of large eddy simulation(LES)is highly dependent on the performance of sub-grid scale(SGS)model.In the present paper,a dynamic cubic nonlinear sub-grid scale model(DCNM)proposed by Huang et al.is implemented for the simulation of unsteady cavitating flow around a 3-D Clark-Y hydrofoil in OpenFOAM.Its performance in predicting the evolution of cloud cavitation is discussed in detail.The simulation with a linear model,the dynamic Smagorinsky model(DSM),is also conducted as a comparison.The results with DCNM show a better agreement with the available experimental observation.The comparison between DCNM and DSM further suggests that the DCNM is able to predict the backscatter more precisely,which is an important feature in LES.The characteristics of DCNM is analyzed to account for its advantages in the prediction of unsteady cloud cavitation as well.The results reveal that it is the nonlinear terms of DCNM that makes DCNM capture sub-grid scale vortices better and more suitable for studying the transient behaviors of cloud cavitation than DSM.展开更多
Turbulent fluidized bed reactors are widely used in industry. However, CFD simulations of the hydrody- namic characteristics of these reactors are relatively sparse, despite the urgent demand from industry. To address...Turbulent fluidized bed reactors are widely used in industry. However, CFD simulations of the hydrody- namic characteristics of these reactors are relatively sparse, despite the urgent demand from industry. To address this problem, Eulerian simulations with an EMMS-based sub-grid scale model, accounting for the effect of sub-grid scale structures on the inter-phase friction, are performed to study the hydrodynamics inside a large-scale turbulent fluidized bed of FCC particles. It is shown that the simulated axial and radial solid concentration profiles, entrained solid fluxes and standard deviation of the solid concentration fluc- tuation agreed well with experimental data available in the literature. In-depth analysis of time-averaged particle velocity and solid concentration shows that a dense-suspension upflow regime coexists with fast fluidization regime in this bed, which is reminiscent of the hydrodynamic characteristics in high-density circulating fluidized bed (CFB) risers, even though they are operated in different fluidization regimes. The Reynolds stresses in turbulent fluidized beds are anisotropic, but the degree of anisotropy is far less pro- nounced than the reported values in CFB risers. It was also found that the solid concentration fluctuation and axial particle velocity fluctuation are strongly correlated. 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are comple...The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are complex and inter-connected.Finite element method(FEM)is considered as an effective method to predict process variables and reveal microscopic physical phenomena in the cutting process.Therefore,the finite element(FE)simulation is used to research the conventional and micro scale cutting process,and the differences in the establishment of process variable FE simulation models are distinguished,thereby improving the accuracy of FE simulation.The reliability and effectiveness of FE simulation model largely depend on the accuracy of the simulation method,constitutive model,friction model,damage model in describing mesh element,the dynamic mechanical behavior of materials,the tool-chip-workpiece contact process and the chip formation mechanism.In this paper,the FE models of conventional and micro process variables are comprehensively and up-to-date reviewed for different materials and machining methods.The purpose is to establish a FE model that is more in line with the real cutting conditions,and to provide the possibility for optimizing the cutting process variables.The development direction of FE simulation of metal cutting process is discussed,which provides guidance for future cutting process modeling.展开更多
For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out s...For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures.展开更多
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections h...Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections have the form ∝ L^(-ω),then we find ω=1.546(30) andω=1.509(14) as the best estimates.These are obtained from the finite-size scaling of the susceptibility data in the range of linear lattice sizes L ∈[128,2048] at the critical value of the Binder cumulant and from the scaling of the corresponding pseudocritical couplings within L∈[64,2048].These values agree with several other MC estimates at the assumption of the power-law corrections and are comparable with the known results of the ε-expansion.In addition,we have tested the consistency with the scaling corrections of the form ∝ L^(-4/3),∝L^(-4/3)In L and ∝L^(-4/3)/ln L,which might be expected from some considerations of the renormalization group and Coulomb gas model.The latter option is consistent with our MC data.Our MC results served as a basis for a critical reconsideration of some earlier theoretical conjectures and scaling assumptions.In particular,we have corrected and refined our previous analysis by grouping Feynman diagrams.The renewed analysis gives ω≈4-d-2η as some approximation for spatial dimensions d <4,or ω≈1.5 in two dimensions.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whiten...Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whitening efficacy.In this study,zebrafish embryos are used as biological models to evaluate the whitening efficacy of six kinds of cosmetics raw materials,such as antioxidant,preservative and essence,and the formula of facial cleanser and facial mask products,and the limitations of the zebrafish melanin production grayscale detection method in practical application are discussed.The results show that the selection of different types of components can also reduce the production of melanin and show whitening effect.It can be seen that the gray scale method of melanin production in zebrafish is suitable for the evaluation of the efficacy of raw materials.In practical application,due to the complexity of the formula,the toxic effects of different types of ingredients may interfere with the melanin generation of zebrafish,affecting the judgment and evaluation of whitening efficacy.For the detection of whitening efficacy of products,a comprehensive evaluation system should be built together with other methods to accurately evaluate the whitening efficacy.展开更多
Electrocatalysis has been extensively explored for the storage and conversion of renewable electric power.Understanding the physisorption and chemisorption processes at electrified solid–liquid interfaces(ESLIs)is cr...Electrocatalysis has been extensively explored for the storage and conversion of renewable electric power.Understanding the physisorption and chemisorption processes at electrified solid–liquid interfaces(ESLIs)is crucial for revealing the typical surface restructuring and catalyst dissolution during electrocatalysis.Although advanced in situ tools and theoretical models have been proposed[1,2],identifying the nature of the active sites with atomic-scale spatial resolution remains a challenge,especially at ESLIs.In a recent work published in Nature,Zhang et al.[3]reported a groundbreaking atomic-resolution imaging of the structural dynamics of Cu nanowire catalysts in ESLIs for electrochemical CO_(2)reduction(ECR).展开更多
The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex s...The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex system.However,there have not been effective methods for the model reliability and uncertainty analysis due to its complexity and difficulty.The uncertainties in hydrological modeling come from four important aspects:uncertainties in input data and parameters,uncertainties in model structure,uncertainties in analysis method and the initial and boundary conditions.This paper systematically reviewed the recent advances in the study of the uncertainty analysis approaches in the large-scale complex hydrological model on the basis of uncertainty sources.Also,the shortcomings and insufficiencies in the uncertainty analysis for complex hydrological models are pointed out.And then a new uncertainty quantification platform PSUADE and its uncertainty quantification methods were introduced,which will be a powerful tool and platform for uncertainty analysis of large-scale complex hydrological models.Finally,some future perspectives on uncertainty quantification are put forward.展开更多
Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaverage...Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaveraged velocities induced by ISWs are used for the velocity-inlet boundary. Three scale ratio numerical models λ=1, 20 and 300 were selected, which the scale ratio is the size ratio of numerical models to the experimental model.The comparisons between the numerical and former experimental results are performed to verify the feasibility of numerical method. The comparisons between the numerical and simplified theoretical results are performed to discuss the applicability of the simplified theoretical model summarized from the load experiments. Firstly, the numerical results of λ=1 numerical model showed a good agreement with former experimental and simplified theoretical results. It is feasible to simulate the ISWs loads on FPSO by the numerical method. Secondly, the comparisons between the results of three scale ratio numerical models and experimental results indicated that the scale ratios have more significant influence on the experimental horizontal forces than the vertical forces. The scale effect of horizontal forces mainly results from the different viscosity effects associated with the model’s dimension.Finally, through the comparisons between the numerical and simplified theoretical results for three scale ratio models, the simplified theoretical model of the pressure difference and friction forces exerted by ISWs on FPSO is applied for large-scale or full-scale FPSO.展开更多
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter...The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale d...Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dis- sipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas tur- bulence augmentation model accounting for the finite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can prop- erly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in ex- periments.展开更多
The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transp...The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.展开更多
Zero liquid discharge(ZLD)treatment and reuse equipment of high salinity wastewater in coal-chemical industry often occur in various types of blockage problems because of high salt content,affecting the long-term stab...Zero liquid discharge(ZLD)treatment and reuse equipment of high salinity wastewater in coal-chemical industry often occur in various types of blockage problems because of high salt content,affecting the long-term stability of the device.In this study,the effects of solution temperature,steel,reaction time and wall roughness on fouling were investigated.The changes in the contents of fouling and fouling substances were qualitatively and quantitatively analyzed by XRD and EDS respectively,and the formation of scale was observed by SEM.The results show that with temperature increasing,Q235 steel is the most difficult to scale.Scaling rate of all salt scales reaches a maximum after 12 h,and the fouling rate decreases significantly from 12 to 48 h.It gradually stabilizes at 48 to 96 h.With the roughness increasing,the thickness of fouling layer increases,and a linear relationship is presented for 1 to 10 h.By comparing actual and simulated wastewater scaling rates,the relationship between actual and simulated wastewater scaling rates is y=ax-0.494.The composition of the scale was analyzed,calcium carbonate is the main product and increases with fouling time.Based on the above-mentioned results combining literatures,the hybrid prediction model with calcium carbonate as the main product is put forward.It is discussed microscopically that calcium carbonate is converted from aragonite and vaterite in a thermodynamically metastable state to calcite in a thermodynamically stable state.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
基金supported by the Ministry of Public Works and Housing of Indonesia and Parahyangan Catholic University(Grant No.II/PD/2023-07/02-SJ).
文摘Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51822903,11772239).
文摘The accuracy of large eddy simulation(LES)is highly dependent on the performance of sub-grid scale(SGS)model.In the present paper,a dynamic cubic nonlinear sub-grid scale model(DCNM)proposed by Huang et al.is implemented for the simulation of unsteady cavitating flow around a 3-D Clark-Y hydrofoil in OpenFOAM.Its performance in predicting the evolution of cloud cavitation is discussed in detail.The simulation with a linear model,the dynamic Smagorinsky model(DSM),is also conducted as a comparison.The results with DCNM show a better agreement with the available experimental observation.The comparison between DCNM and DSM further suggests that the DCNM is able to predict the backscatter more precisely,which is an important feature in LES.The characteristics of DCNM is analyzed to account for its advantages in the prediction of unsteady cloud cavitation as well.The results reveal that it is the nonlinear terms of DCNM that makes DCNM capture sub-grid scale vortices better and more suitable for studying the transient behaviors of cloud cavitation than DSM.
基金supported by National Natural Science Foundation of China under the grants Nos. 20336040,20490201 and 20221603the Chinese Academy of Science sunder the grant KJCX-SW-L08
文摘Turbulent fluidized bed reactors are widely used in industry. However, CFD simulations of the hydrody- namic characteristics of these reactors are relatively sparse, despite the urgent demand from industry. To address this problem, Eulerian simulations with an EMMS-based sub-grid scale model, accounting for the effect of sub-grid scale structures on the inter-phase friction, are performed to study the hydrodynamics inside a large-scale turbulent fluidized bed of FCC particles. It is shown that the simulated axial and radial solid concentration profiles, entrained solid fluxes and standard deviation of the solid concentration fluc- tuation agreed well with experimental data available in the literature. In-depth analysis of time-averaged particle velocity and solid concentration shows that a dense-suspension upflow regime coexists with fast fluidization regime in this bed, which is reminiscent of the hydrodynamic characteristics in high-density circulating fluidized bed (CFB) risers, even though they are operated in different fluidization regimes. The Reynolds stresses in turbulent fluidized beds are anisotropic, but the degree of anisotropy is far less pro- nounced than the reported values in CFB risers. It was also found that the solid concentration fluctuation and axial particle velocity fluctuation are strongly correlated. 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
基金supported by the National Natural Science Foundation of China(No.52175393)。
文摘The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are complex and inter-connected.Finite element method(FEM)is considered as an effective method to predict process variables and reveal microscopic physical phenomena in the cutting process.Therefore,the finite element(FE)simulation is used to research the conventional and micro scale cutting process,and the differences in the establishment of process variable FE simulation models are distinguished,thereby improving the accuracy of FE simulation.The reliability and effectiveness of FE simulation model largely depend on the accuracy of the simulation method,constitutive model,friction model,damage model in describing mesh element,the dynamic mechanical behavior of materials,the tool-chip-workpiece contact process and the chip formation mechanism.In this paper,the FE models of conventional and micro process variables are comprehensively and up-to-date reviewed for different materials and machining methods.The purpose is to establish a FE model that is more in line with the real cutting conditions,and to provide the possibility for optimizing the cutting process variables.The development direction of FE simulation of metal cutting process is discussed,which provides guidance for future cutting process modeling.
文摘For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures.
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections have the form ∝ L^(-ω),then we find ω=1.546(30) andω=1.509(14) as the best estimates.These are obtained from the finite-size scaling of the susceptibility data in the range of linear lattice sizes L ∈[128,2048] at the critical value of the Binder cumulant and from the scaling of the corresponding pseudocritical couplings within L∈[64,2048].These values agree with several other MC estimates at the assumption of the power-law corrections and are comparable with the known results of the ε-expansion.In addition,we have tested the consistency with the scaling corrections of the form ∝ L^(-4/3),∝L^(-4/3)In L and ∝L^(-4/3)/ln L,which might be expected from some considerations of the renormalization group and Coulomb gas model.The latter option is consistent with our MC data.Our MC results served as a basis for a critical reconsideration of some earlier theoretical conjectures and scaling assumptions.In particular,we have corrected and refined our previous analysis by grouping Feynman diagrams.The renewed analysis gives ω≈4-d-2η as some approximation for spatial dimensions d <4,or ω≈1.5 in two dimensions.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.
文摘Because the physiological characteristics and melanin regulation mechanism of zebrafish are highly similar with those of humans,it is of high reference value to use zebrafish model in the evaluation of cosmetic whitening efficacy.In this study,zebrafish embryos are used as biological models to evaluate the whitening efficacy of six kinds of cosmetics raw materials,such as antioxidant,preservative and essence,and the formula of facial cleanser and facial mask products,and the limitations of the zebrafish melanin production grayscale detection method in practical application are discussed.The results show that the selection of different types of components can also reduce the production of melanin and show whitening effect.It can be seen that the gray scale method of melanin production in zebrafish is suitable for the evaluation of the efficacy of raw materials.In practical application,due to the complexity of the formula,the toxic effects of different types of ingredients may interfere with the melanin generation of zebrafish,affecting the judgment and evaluation of whitening efficacy.For the detection of whitening efficacy of products,a comprehensive evaluation system should be built together with other methods to accurately evaluate the whitening efficacy.
基金financially supported by the Natural Science Foundation of Shandong(ZR2023ME014)。
文摘Electrocatalysis has been extensively explored for the storage and conversion of renewable electric power.Understanding the physisorption and chemisorption processes at electrified solid–liquid interfaces(ESLIs)is crucial for revealing the typical surface restructuring and catalyst dissolution during electrocatalysis.Although advanced in situ tools and theoretical models have been proposed[1,2],identifying the nature of the active sites with atomic-scale spatial resolution remains a challenge,especially at ESLIs.In a recent work published in Nature,Zhang et al.[3]reported a groundbreaking atomic-resolution imaging of the structural dynamics of Cu nanowire catalysts in ESLIs for electrochemical CO_(2)reduction(ECR).
基金National Key Basic Research Program of China,No.2010CB428403National Grand Science and Technology Special Project of Water Pollution Control and Improvement,No.2009ZX07210-006
文摘The regional hydrological system is extremely complex because it is affected not only by physical factors but also by human dimensions.And the hydrological models play a very important role in simulating the complex system.However,there have not been effective methods for the model reliability and uncertainty analysis due to its complexity and difficulty.The uncertainties in hydrological modeling come from four important aspects:uncertainties in input data and parameters,uncertainties in model structure,uncertainties in analysis method and the initial and boundary conditions.This paper systematically reviewed the recent advances in the study of the uncertainty analysis approaches in the large-scale complex hydrological model on the basis of uncertainty sources.Also,the shortcomings and insufficiencies in the uncertainty analysis for complex hydrological models are pointed out.And then a new uncertainty quantification platform PSUADE and its uncertainty quantification methods were introduced,which will be a powerful tool and platform for uncertainty analysis of large-scale complex hydrological models.Finally,some future perspectives on uncertainty quantification are put forward.
基金financially supported by the National Natural Science Foundation of China(Grant No.11372184)the National Basic Research Program of China(973 Program,Grant Nos.2015CB251203-3 and 2013CB036103)
文摘Scale effect of ISWs loads on Floating Production Storage and Offloading(FPSO) is studied in this paper. The application conditions of KdV, eKdV and MCC ISWs theories are used in the numerical method. The depthaveraged velocities induced by ISWs are used for the velocity-inlet boundary. Three scale ratio numerical models λ=1, 20 and 300 were selected, which the scale ratio is the size ratio of numerical models to the experimental model.The comparisons between the numerical and former experimental results are performed to verify the feasibility of numerical method. The comparisons between the numerical and simplified theoretical results are performed to discuss the applicability of the simplified theoretical model summarized from the load experiments. Firstly, the numerical results of λ=1 numerical model showed a good agreement with former experimental and simplified theoretical results. It is feasible to simulate the ISWs loads on FPSO by the numerical method. Secondly, the comparisons between the results of three scale ratio numerical models and experimental results indicated that the scale ratios have more significant influence on the experimental horizontal forces than the vertical forces. The scale effect of horizontal forces mainly results from the different viscosity effects associated with the model’s dimension.Finally, through the comparisons between the numerical and simplified theoretical results for three scale ratio models, the simplified theoretical model of the pressure difference and friction forces exerted by ISWs on FPSO is applied for large-scale or full-scale FPSO.
基金The project supported by the National Natural Science Foundation of China (50176022)
文摘The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
基金State Key Development Program for Basic Research of China (No.2006CB200305), the National Natural Sci-ence Foundation of China (No.50376004), and Ph.D. Program Foundation of Ministry of Education of China (No.20030007028).
文摘Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dis- sipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas tur- bulence augmentation model accounting for the finite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can prop- erly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in ex- periments.
基金co-supported by the National Key R&D Program of China(Nos.2017YFB0202400 and 2017YFB0202402)the National Natural Science Foundation of China(No.91741125)the Project of Newton International Fellowship Alumnus from Royal Society(No.AL120003)
文摘The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.
基金financially supported by East-West Cooperation Project of Ningxia Key R&D Plan(2017BY064)National First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)。
文摘Zero liquid discharge(ZLD)treatment and reuse equipment of high salinity wastewater in coal-chemical industry often occur in various types of blockage problems because of high salt content,affecting the long-term stability of the device.In this study,the effects of solution temperature,steel,reaction time and wall roughness on fouling were investigated.The changes in the contents of fouling and fouling substances were qualitatively and quantitatively analyzed by XRD and EDS respectively,and the formation of scale was observed by SEM.The results show that with temperature increasing,Q235 steel is the most difficult to scale.Scaling rate of all salt scales reaches a maximum after 12 h,and the fouling rate decreases significantly from 12 to 48 h.It gradually stabilizes at 48 to 96 h.With the roughness increasing,the thickness of fouling layer increases,and a linear relationship is presented for 1 to 10 h.By comparing actual and simulated wastewater scaling rates,the relationship between actual and simulated wastewater scaling rates is y=ax-0.494.The composition of the scale was analyzed,calcium carbonate is the main product and increases with fouling time.Based on the above-mentioned results combining literatures,the hybrid prediction model with calcium carbonate as the main product is put forward.It is discussed microscopically that calcium carbonate is converted from aragonite and vaterite in a thermodynamically metastable state to calcite in a thermodynamically stable state.