期刊文献+
共找到561篇文章
< 1 2 29 >
每页显示 20 50 100
Super-Resolution Generative Adversarial Network with Pyramid Attention Module for Face Generation
1
作者 Parvathaneni Naga Srinivasu G.JayaLakshmi +4 位作者 Sujatha Canavoy Narahari Victor Hugo C.de Albuquerque Muhammad Attique Khan Hee-Chan Cho Byoungchol Chang 《Computers, Materials & Continua》 2025年第10期2117-2139,共23页
The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(... The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis. 展开更多
关键词 Artificial intelligence generative adversarial network pyramid attention module face generation deep learning
在线阅读 下载PDF
Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection
2
作者 Zijun Gao Zheyi Li +2 位作者 Chunqi Zhang Ying Wang Jingwen Su 《Computers, Materials & Continua》 2025年第6期4353-4371,共19页
Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of intersp... Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops. 展开更多
关键词 Pest detection YOLOv5 feature pyramid network transformer attention module
在线阅读 下载PDF
MMIF:Multimodal Medical Image Fusion Network Based on Multi-Scale Hybrid Attention
3
作者 Jianjun Liu Yang Li +2 位作者 Xiaoting Sun Xiaohui Wang Hanjiang Luo 《Computers, Materials & Continua》 2025年第11期3551-3568,共18页
Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused inform... Multimodal image fusion plays an important role in image analysis and applications.Multimodal medical image fusion helps to combine contrast features from two or more input imaging modalities to represent fused information in a single image.One of the critical clinical applications of medical image fusion is to fuse anatomical and functional modalities for rapid diagnosis of malignant tissues.This paper proposes a multimodal medical image fusion network(MMIF-Net)based on multiscale hybrid attention.The method first decomposes the original image to obtain the low-rank and significant parts.Then,to utilize the features at different scales,we add amultiscalemechanism that uses three filters of different sizes to extract the features in the encoded network.Also,a hybrid attention module is introduced to obtain more image details.Finally,the fused images are reconstructed by decoding the network.We conducted experiments with clinical images from brain computed tomography/magnetic resonance.The experimental results show that the multimodal medical image fusion network method based on multiscale hybrid attention works better than other advanced fusion methods. 展开更多
关键词 Medical image fusion multiscale mechanism hybrid attention module encoded network
在线阅读 下载PDF
AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network
4
作者 Ya-Jie Sun Li-Wei Qiao Sai Ji 《Computers, Materials & Continua》 2025年第7期1769-1785,共17页
Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-c... Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues. 展开更多
关键词 Vehicle re-identification a lightweight attention module global features local features graph convolution network
在线阅读 下载PDF
Unsupervised multi-modal image translation based on the squeeze-and-excitation mechanism and feature attention module 被引量:1
5
作者 胡振涛 HU Chonghao +1 位作者 YANG Haoran SHUAI Weiwei 《High Technology Letters》 EI CAS 2024年第1期23-30,共8页
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera... The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable. 展开更多
关键词 multi-modal image translation generative adversarial network(GAN) squeezeand-excitation(SE)mechanism feature attention(FA)module
在线阅读 下载PDF
Multimodal medical image fusion based on mask optimization and parallel attention mechanism
6
作者 DI Jing LIANG Chan +1 位作者 GUO Wenqing LIAN Jing 《Journal of Measurement Science and Instrumentation》 2025年第1期26-36,共11页
Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability... Medical image fusion technology is crucial for improving the detection accuracy and treatment efficiency of diseases,but existing fusion methods have problems such as blurred texture details,low contrast,and inability to fully extract fused image information.Therefore,a multimodal medical image fusion method based on mask optimization and parallel attention mechanism was proposed to address the aforementioned issues.Firstly,it converted the entire image into a binary mask,and constructed a contour feature map to maximize the contour feature information of the image and a triple path network for image texture detail feature extraction and optimization.Secondly,a contrast enhancement module and a detail preservation module were proposed to enhance the overall brightness and texture details of the image.Afterwards,a parallel attention mechanism was constructed using channel features and spatial feature changes to fuse images and enhance the salient information of the fused images.Finally,a decoupling network composed of residual networks was set up to optimize the information between the fused image and the source image so as to reduce information loss in the fused image.Compared with nine high-level methods proposed in recent years,the seven objective evaluation indicators of our method have improved by 6%−31%,indicating that this method can obtain fusion results with clearer texture details,higher contrast,and smaller pixel differences between the fused image and the source image.It is superior to other comparison algorithms in both subjective and objective indicators. 展开更多
关键词 multimodal medical image fusion binary mask contrast enhancement module parallel attention mechanism decoupling network
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
7
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
基于Attention-Conv1D-2Bi-LSTM模型的交通流预测
8
作者 张瑜 刘德斌 +1 位作者 戴志敏 杨子兰 《计算机仿真》 2025年第2期181-186,共6页
在智能交通中,实时准确的交通流预测对市民的出行和政府部门的管理至关重要。针对智能交通预测效果不佳的问题,提出了一种基于注意力机制的一维卷积和双层双向长短时记忆的交通流预测模型。模型结合了一维卷积模块和两层双向长短时记忆... 在智能交通中,实时准确的交通流预测对市民的出行和政府部门的管理至关重要。针对智能交通预测效果不佳的问题,提出了一种基于注意力机制的一维卷积和双层双向长短时记忆的交通流预测模型。模型结合了一维卷积模块和两层双向长短时记忆模块提取交通流的时空特征和前后依赖的周期性特征,同时引入注意力机制关注不同时刻的交通流的影响。实验结果表明,提出模型的预测效果优于对比模型,说明所提模型一定程度上提高了交通流的预测精度。 展开更多
关键词 注意力机制 一维卷积模块 循环神经网络 交通预测模型
在线阅读 下载PDF
An attention-based prototypical network for forest fire smoke few-shot detection 被引量:3
9
作者 Tingting Li Haowei Zhu +1 位作者 Chunhe Hu Junguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1493-1504,共12页
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn... Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches. 展开更多
关键词 Forest fire smoke detection Few-shot learning Channel attention module Spatial attention module Prototypical network
在线阅读 下载PDF
Fusion of Convolutional Self-Attention and Cross-Dimensional Feature Transformationfor Human Posture Estimation
10
作者 Anzhan Liu Yilu Ding Xiangyang Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期346-360,共15页
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ... Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation. 展开更多
关键词 human posture estimation adaptive fusion method cross-dimensional interaction attention module high-resolution network
在线阅读 下载PDF
Single Image Deraining Using Dual Branch Network Based on Attention Mechanism for IoT 被引量:1
11
作者 Di Wang Bingcai Wei Liye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1989-2000,共12页
Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information... Extracting useful details from images is essential for the Internet of Things project.However,in real life,various external environments,such as badweather conditions,will cause the occlusion of key target information and image distortion,resulting in difficulties and obstacles to the extraction of key information,affecting the judgment of the real situation in the process of the Internet of Things,and causing system decision-making errors and accidents.In this paper,we mainly solve the problem of rain on the image occlusion,remove the rain grain in the image,and get a clear image without rain.Therefore,the single image deraining algorithm is studied,and a dual-branch network structure based on the attention module and convolutional neural network(CNN)module is proposed to accomplish the task of rain removal.In order to complete the rain removal of a single image with high quality,we apply the spatial attention module,channel attention module and CNN module to the network structure,and build the network using the coder-decoder structure.In the experiment,with the structural similarity(SSIM)and the peak signal-to-noise ratio(PSNR)as evaluation indexes,the training and testing results on the rain removal dataset show that the proposed structure has a good effect on the single image deraining task. 展开更多
关键词 Internet of Things image deraining dual-branch network structure attention module convolutional neural network
在线阅读 下载PDF
Multi-Scale Attention-Based Deep Neural Network for Brain Disease Diagnosis 被引量:1
12
作者 Yin Liang Gaoxu Xu Sadaqat ur Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第9期4645-4661,共17页
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)... Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks. 展开更多
关键词 Autism spectrum disorder diagnosis resting-state fMRI deep neural network functional connectivity multi-scale attention module
在线阅读 下载PDF
基于时空规律的PCA-LSTM-Attention空气质量预测研究
13
作者 栗治杰 贾东水 《环境科学与管理》 CAS 2024年第11期172-177,共6页
空气质量指数(AQI)是考量空气质量好坏的综合指标,由于各地区空气受风向影响不断流动,使传统预测模型难以从时间单一角度进行建模。针对此问题提出一种利用主成分分析(PCA)降维思想,考虑不同地区时空规律的模型。通过收集目标城市和周... 空气质量指数(AQI)是考量空气质量好坏的综合指标,由于各地区空气受风向影响不断流动,使传统预测模型难以从时间单一角度进行建模。针对此问题提出一种利用主成分分析(PCA)降维思想,考虑不同地区时空规律的模型。通过收集目标城市和周边几个城市的所需数据,使用PCA求解所有城市的综合空气得分作为空间信息,再输入LSTM提取时间规律,最后通过注意力模块输出AQI预测。通过对沧州、唐山、廊坊、保定和天津的大气污染物和气象数据的分析,证明该算法比只考虑时间因素的LSTM模型、RNN模型和ARIMA(1,1,1)模型精度更高,可以有助于提高AQI预测精度。 展开更多
关键词 空气质量指数 长短期记忆网络 注意力机制 主成分分析法
在线阅读 下载PDF
Foreground Segmentation Network with Enhanced Attention
14
作者 姜锐 朱瑞祥 +1 位作者 蔡萧萃 苏虎 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第3期360-369,共10页
Moving object segmentation (MOS) is one of the essential functions of the vision system of all robots,including medical robots. Deep learning-based MOS methods, especially deep end-to-end MOS methods, are actively inv... Moving object segmentation (MOS) is one of the essential functions of the vision system of all robots,including medical robots. Deep learning-based MOS methods, especially deep end-to-end MOS methods, are actively investigated in this field. Foreground segmentation networks (FgSegNets) are representative deep end-to-endMOS methods proposed recently. This study explores a new mechanism to improve the spatial feature learningcapability of FgSegNets with relatively few brought parameters. Specifically, we propose an enhanced attention(EA) module, a parallel connection of an attention module and a lightweight enhancement module, with sequentialattention and residual attention as special cases. We also propose integrating EA with FgSegNet_v2 by taking thelightweight convolutional block attention module as the attention module and plugging EA module after the twoMaxpooling layers of the encoder. The derived new model is named FgSegNet_v2 EA. The ablation study verifiesthe effectiveness of the proposed EA module and integration strategy. The results on the CDnet2014 dataset,which depicts human activities and vehicles captured in different scenes, show that FgSegNet_v2 EA outperformsFgSegNet_v2 by 0.08% and 14.5% under the settings of scene dependent evaluation and scene independent evaluation, respectively, which indicates the positive effect of EA on improving spatial feature learning capability ofFgSegNet_v2. 展开更多
关键词 human-computer interaction moving object segmentation foreground segmentation network enhanced attention convolutional block attention module
原文传递
Attention Res-Unet:一种高效阴影检测算法 被引量:12
15
作者 董月 冯华君 +2 位作者 徐之海 陈跃庭 李奇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第2期373-381,406,共10页
图像中阴影像素的存在会导致图像内容的不确定性,对计算机视觉任务有害,因此常将阴影检测作为计算机视觉算法的预处理步骤.提出全新的阴影检测网络结构,通过结合输入图像中包含的语义信息和像素之间的关联,提升网络性能.使用预训练后的... 图像中阴影像素的存在会导致图像内容的不确定性,对计算机视觉任务有害,因此常将阴影检测作为计算机视觉算法的预处理步骤.提出全新的阴影检测网络结构,通过结合输入图像中包含的语义信息和像素之间的关联,提升网络性能.使用预训练后的深层网络ResNeXt101作为特征提取前端,提取图像的语义信息,并结合U-net的设计思路,搭建网络结构,完成特征层的上采样过程.在输出层之前使用非局部操作,为每一个像素提供全局信息,建立像素与像素之间的联系.设计注意力生成模块和注意力融合模块,进一步提高检测准确率.分别在SBU、UCF这2个阴影检测数据集上进行验证,实验结果表明,所提方法的目视效果及客观指标皆优于此前最优方法所得结果,在2个数据集上的平均检测错误率分别降低14.4%和14.9%. 展开更多
关键词 阴影检测 特征提取 语义信息 像素关联 非局部操作 注意力机制 卷积神经网络(CNN)
在线阅读 下载PDF
基于Res_AttentionUnet的高分辨率遥感影像建筑物提取方法 被引量:22
16
作者 李传林 黄风华 +1 位作者 胡威 曾江超 《地球信息科学学报》 CSCD 北大核心 2021年第12期2232-2243,共12页
针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res;ttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物... 针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res;ttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物的提取精度。具体优化方法为:在传统的Unet语义分割网络卷积层中加入针对初高级特征加强提取的ResBlock残差模块,并在网络阶跃连接部分加入Attention注意力机制模块。其中,ResBlock残差模块使卷积后的特征图获取更多的底层信息,增强卷积结构的鲁棒性,从而防止欠拟合;Attention注意力机制可增强对建筑物区域像素的特征学习,使特征提取更完善,从而提高建筑物提取的准确率。本研究采用武汉大学季顺平团队提供的开放数据集(WHU Building Dataset)作为实验数据,并从中选取3个具有不同建筑物特征和代表性的实验区域,然后分别对不同实验区域进行预处理(包括滑动裁剪和图像增强等),最后分别使用Unet、ResUnet、AttentionUnet和Res;ttentionUnet 4种不同的网络模型对3个不同实验区进行建筑物提取实验,并对实验结果进行交叉对比分析。实验结果表明,与其他3种网络相比,本文所提出的Res;ttentionUnet在基于高分辨率遥感影像的建筑物提取中具有更高的精度,平均提取精度达到95.81%,相较于原始Unet网络提升17.94%,同时相较于仅加入残差模块的Unet网络(ResUnet)提升2.19%,能够显著地提升高分辨率遥感影像中建筑物提取的效果。 展开更多
关键词 深度学习 高分辨率遥感影像 建筑物提取 残差模块 注意力模块 卷积神经网络 Unet网络 Res_attentionUnet
原文传递
基于STFT和CNN-Attention的配电终端采集模块故障诊断研究 被引量:5
17
作者 赖奎 戴雄杰 +1 位作者 潘松波 苏博波 《自动化仪表》 CAS 2023年第9期37-41,48,共6页
针对复杂工况运行环境下配电终端采集模块故障类型难以识别的问题,提出一种基于短时傅里叶变换(STFT)、卷积神经网络和注意力机制(CNN-Attention)的配电终端采集模块故障诊断方法。首先,分析配电终端采集模块不同故障类型会产生的对应... 针对复杂工况运行环境下配电终端采集模块故障类型难以识别的问题,提出一种基于短时傅里叶变换(STFT)、卷积神经网络和注意力机制(CNN-Attention)的配电终端采集模块故障诊断方法。首先,分析配电终端采集模块不同故障类型会产生的对应故障数据,建立故障数据集。然后,基于STFT提取故障数据的故障时频特征以形成时频图,采用CNN-Attention模型对时频图进行故障诊断与匹配。算例分析表明,CNN-Attention的故障检测准确率为97.31%,相较于CNN和极限学习机(ELM)模型,故障诊断准确率分别提升了1.22%和4.4%。Attention机制能够有效解决CNN在特征提取时产生的冗余信息导致模型训练慢、难以收敛的问题。该研究实现了配电终端采集模块具体故障类型的准确识别,能为后续配电终端的运维提供参考。 展开更多
关键词 配电终端 采集模块 时频分析 短时傅里叶变换 卷积神经网络 注意力机制 故障诊断 极限学习机
在线阅读 下载PDF
Social Robot Detection Method with Improved Graph Neural Networks 被引量:1
18
作者 Zhenhua Yu Liangxue Bai +1 位作者 Ou Ye Xuya Cong 《Computers, Materials & Continua》 SCIE EI 2024年第2期1773-1795,共23页
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph ... Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social life.Existing social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social robots.This paper proposes a social robot detection method with the use of an improved neural network.First,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships effectively.Then,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the nodes.Next,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph features.Finally,social robots can be more accurately identified by combining user behavioral and relationship features.By carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,respectively.Compared with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two datasets.The results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks. 展开更多
关键词 Social robot detection social relationship subgraph graph attention network feature linear modulation behavioral gene sequences
在线阅读 下载PDF
Image-to-Image Style Transfer Based on the Ghost Module
19
作者 Yan Jiang Xinrui Jia +3 位作者 Liguo Zhang Ye Yuan Lei Chen Guisheng Yin 《Computers, Materials & Continua》 SCIE EI 2021年第9期4051-4067,共17页
The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target... The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network.However,the existing methods typically have a large computational cost.To achieve efficient style transfer,we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations.Then we utilize an attention mechanism to transform images with various styles.We optimize the original generative adversarial network(GAN)by using more efficient calculation methods for image-to-illustration translation.The experimental results show that our proposed method is similar to human vision and still maintains the quality of the image.Moreover,our proposed method overcomes the high computational cost and high computational resource consumption for style transfer.By comparing the results of subjective and objective evaluation indicators,our proposed method has shown superior performance over existing methods. 展开更多
关键词 Style transfer generative adversarial networks ghost module attention mechanism human visual habits
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
20
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部