A single-photon source with narrow bandwidth,high purity,and large brightness can efficiently interact with material qubits strongly coupled to an optical microcavity for quantum information processing.Here,we experim...A single-photon source with narrow bandwidth,high purity,and large brightness can efficiently interact with material qubits strongly coupled to an optical microcavity for quantum information processing.Here,we experimentally demonstrate a degenerate doubly resonant single-photon source at 852 nm by the cavity-enhanced spontaneous parametric downconversion process with a 100%duty cycle of generation.The single photon source possesses both high purity with a second-order correlation g^((2))_(h)(0)=0.021 and narrow linewidth with△_(V_(sp))=(800±13)kHz.The single-photon s Single-photon source with sub-MHz linewidth for cesium-based quantum information processingource is compatible with the cesium atom D2 line and can be used for cesium-based quantum information processing Single-photon source with sub-MHz linewidth for cesium-based quantum information processing0.021.展开更多
An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit ...An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.11974223,and 11974225)the Fund for Shanxi 1331 Project Key Subjects Construction.
文摘A single-photon source with narrow bandwidth,high purity,and large brightness can efficiently interact with material qubits strongly coupled to an optical microcavity for quantum information processing.Here,we experimentally demonstrate a degenerate doubly resonant single-photon source at 852 nm by the cavity-enhanced spontaneous parametric downconversion process with a 100%duty cycle of generation.The single photon source possesses both high purity with a second-order correlation g^((2))_(h)(0)=0.021 and narrow linewidth with△_(V_(sp))=(800±13)kHz.The single-photon s Single-photon source with sub-MHz linewidth for cesium-based quantum information processingource is compatible with the cesium atom D2 line and can be used for cesium-based quantum information processing Single-photon source with sub-MHz linewidth for cesium-based quantum information processing0.021.
基金supported by the National Natural Science Foundation of China(No.61674036)the National Key Research and Development Program of China(No.2018YFB2202200).
文摘An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz.