Reliable fabrication of micro/nanostructures with sub-10 nm features is of great significance for advancing nanoscience and nanotechnology.While the capability of current complementary metal-oxide semiconductor(CMOS)c...Reliable fabrication of micro/nanostructures with sub-10 nm features is of great significance for advancing nanoscience and nanotechnology.While the capability of current complementary metal-oxide semiconductor(CMOS)chip manufacturing can produce structures on the sub-10 nm scale,many emerging applications,such as nano-optics,biosensing,and quantum devices,also require ultrasmall features down to single digital nanometers.In these emerging applications,CMOS-based manufacturing methods are currently not feasible or appropriate due to the considerations of usage cost,material compatibility,and exotic features.Therefore,several specific methods have been developed in the past decades for different applications.In this review,we attempt to give a systematic summary on sub-10 nm fabrication methods and their related applications.In the first and second parts,we give a brief introduction of the background of this research topic and explain why sub-10 nm fabrication is interesting from both scientific and technological perspectives.In the third part,we comprehensively summarize the fabrication methods and classify them into three main approaches,including lithographic,mechanics-enabled,and post-trimming processes.The fourth part discusses the applications of these processes in quantum devices,nano-optics,and high-performance sensing.Finally,a perspective is given to discuss the challenges and opportunities associated with this research topic.展开更多
Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality ...Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost.In this study,a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations.Through a SVM algorithm,the relationship between the nanopore structures and the fabrication conditions,including the etching solution,etching time,dopant type,and concentration,was modeled and experimentally verified.Based on this,a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained.The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores,nanostructures,and devices.展开更多
Directed self-assembly(DSA)emerges as one of the most promising new patterning techniques for single digit miniaturization and next generation lithography.DSA achieves high-resolution patterning by molecular assembly ...Directed self-assembly(DSA)emerges as one of the most promising new patterning techniques for single digit miniaturization and next generation lithography.DSA achieves high-resolution patterning by molecular assembly that circumvents the diffraction limit of conventional photolithography.Recently,the International Roadmap for Devices and Systems listed DSA as one of the advanced lithography techniques for the fabrication of 3-5 nm technology node devices.DSA can be combined with other lithography techniques,such as extreme ultra violet(EUV)and 193 nm immersion(193i),to further enhance the patterning resolution and the device density.So far,DSA has demonstrated its superior ability for the fabrication of nanoscale devices,such as fin field effect transistor and bit pattern media,offering a variety of configurations for high-density integration and low-cost manufacturing.Over 1 T in-2 device density can be achieved either by direct templating or coupled with nanoimprinting to improve the throughput.The development of high x block copolymer further enhances the patterning resolution of DSA.In addition to its superiority in high-resolution patterning,the implementation ofDSA on a 300 mm pivot line fully demonstrates its potential for large-scale,high-throughput,and cost-effective manufacturing in industrial environment.展开更多
A high quality epitaxial Si layer by molecular beam epitaxy(MBE)on Si(001)substrates was demonstrated to fabricate a channel with low density defects for high-performance Fin FET technology.In order to study the effec...A high quality epitaxial Si layer by molecular beam epitaxy(MBE)on Si(001)substrates was demonstrated to fabricate a channel with low density defects for high-performance Fin FET technology.In order to study the effects of fin width and crystallography orientation on the MBE behavior,a 30 nm thick Si layer was deposited on the top of an etched Si fin with different widths from 10 nm to 50 nm and orientations of 100 and 110.The result shows that a defect-free Si film was obtained on the fin by MBE,since the etching damage was confined in the bottom of the epitaxial layer.In addition,the vertical growth of the epitaxial Si layer was observed on sub-10 nm 100 Si fins,and this was explained by a kinetic mechanism.展开更多
As short as 8.5 fs pulses have been generated from a home made self-start self-mode-locking Ti: sap-phire laser. With higher Ti dopped, shorter laser rod, lower third order group velocity dispersion prism pair, and la...As short as 8.5 fs pulses have been generated from a home made self-start self-mode-locking Ti: sap-phire laser. With higher Ti dopped, shorter laser rod, lower third order group velocity dispersion prism pair, and larger gain modulation operation condition, the laser possesses the potential of generating sub-10 femtosecond.展开更多
This paper describes the evaluation of trace element composition of atmospheric aerosol particles (PM<sub>2.5</sub> and PM<sub>10</sub>) and their influence on air quality in the largest indust...This paper describes the evaluation of trace element composition of atmospheric aerosol particles (PM<sub>2.5</sub> and PM<sub>10</sub>) and their influence on air quality in the largest industrial area of Abidjan city, C?te d’Ivoire. Multi-week sampling was conducted in an urban site (industrial area) in Abidjan from April 2018 to July 2019. The mean mass concentration was 48.83 ± 15.24 μg/m<sup>3</sup> for PM<sub>2.5</sub> and 77.34 ± 10.91 μg/m<sup>3</sup> for PM<sub>10</sub>, with significant temporal variability. The average ratio of PM<sub>2.5</sub>/PM<sub>10</sub> was 0.64 ± 0.21. The concentration of BC in PM<sub>2.5</sub> and PM<sub>10</sub> was respectively 52.32 ± 7.48 μg/m<sup>3</sup> and 52.26 ± 12.07 μg/m<sup>3</sup>. Twenty-two elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr and Pb were analysed by Energy Dispersive X-ray Fluorescence (EDXRF). Elemental composition data were modeled using principal component analysis (PCA) with varimax rotation to determine two (2) and four (4) dominant source categories contributing to PM<sub>2.5</sub> and PM<sub>10</sub> respectively. In the case of fine particles PM<sub>2.5</sub>, the possible sources were Industrial activities and non-exhaust emissions, exhaust emissions. The PM<sub>10</sub> sources were industrial activities and non-exhaust emissions, industrial processes, mineral dust, and waste combustion.展开更多
Soil CO<sub>2</sub> efflux is an ongoing process of respiration from soil;plant parts/ microbes below the ground to the atmosphere which is known for faster cycling of carbon sources. A large portion of ca...Soil CO<sub>2</sub> efflux is an ongoing process of respiration from soil;plant parts/ microbes below the ground to the atmosphere which is known for faster cycling of carbon sources. A large portion of carbon sequestered and fixed by forests is returned to the atmosphere through soil CO<sub>2</sub> efflux and multiple controlling parameters mainly temperature, precipitation, and growth factors interact with the soil CO<sub>2</sub> efflux variation. This study assessed the soil CO<sub>2</sub> efflux every month for consecutive 2-years (August 2015 to July 2017) by using the closed chamber method to determine the role of ecological parameters that govern the soil CO<sub>2</sub> efflux and its temporal modification in a sub-tropical mixed forest of central region in Nepal. The results of this study manifested that soil CO<sub>2</sub> efflux accounted 63.2% (y = 31.96e<sup>0.128x</sup>), 71.3% (y = 44.77e<sup>0.123x</sup>) and 64.5% (y = 44.11e<sup>0.117x</sup>) variations in soil temperature with significantly (p < 0.05) exponential positive relation in the year 2015/2016, 2016/2017 and the two years when merged. And the temperature sensitivity value (Q<sub>10</sub>) of the soil CO<sub>2</sub> efflux was 3.6, 3.4, and 3.2, respectively. Soil water content also expressed significantly (p < 0.05) positive exponential effect on soil CO<sub>2</sub> efflux and accounted 62.0% (y = 138.3e<sup>0.057x</sup>), 46.1% (y = 88.42e<sup>0.052x</sup>) and 40.5% (y = 133.1e<sup>0.0447x</sup>) in its variability in different years and the merged years. Evident variations of soil CO<sub>2</sub> efflux, soil temperature, soil water content, and litter were observed in the forest seasonally and inter-annually. Two years mean total annual soil CO<sub>2</sub> efflux of the forest was estimated at 904.76 g C·m<sup>-2</sup>·y<sup>-1</sup>. The study revealed that sub-tropical forests could be more influenced by precipitation regimes in progressing warm climates i.e. vulnerable to climate change, illustrating the comprehensive dynamics of the representative forest carbon cycle in the tropical region.展开更多
We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplificat...We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.51722503,51805160and U1930114)the National Key Research and Development Program of China(Grant No.2018YFE0109200)the Guangdong Basic Research Foundation(Grant No.2020A1515110971)。
文摘Reliable fabrication of micro/nanostructures with sub-10 nm features is of great significance for advancing nanoscience and nanotechnology.While the capability of current complementary metal-oxide semiconductor(CMOS)chip manufacturing can produce structures on the sub-10 nm scale,many emerging applications,such as nano-optics,biosensing,and quantum devices,also require ultrasmall features down to single digital nanometers.In these emerging applications,CMOS-based manufacturing methods are currently not feasible or appropriate due to the considerations of usage cost,material compatibility,and exotic features.Therefore,several specific methods have been developed in the past decades for different applications.In this review,we attempt to give a systematic summary on sub-10 nm fabrication methods and their related applications.In the first and second parts,we give a brief introduction of the background of this research topic and explain why sub-10 nm fabrication is interesting from both scientific and technological perspectives.In the third part,we comprehensively summarize the fabrication methods and classify them into three main approaches,including lithographic,mechanics-enabled,and post-trimming processes.The fourth part discusses the applications of these processes in quantum devices,nano-optics,and high-performance sensing.Finally,a perspective is given to discuss the challenges and opportunities associated with this research topic.
基金supported by the National Natural Science Foundation of China[Grant Nos.51975127,U20A6004]the Guangdong-Hong Kong Technology Coopeartion[Grant No.GHP/112/19GD]from Hong Kong Innovation and Technology Commission+1 种基金Research and Development Program of Guangdong Province[Grant No.2020A0505140008]the Fund of Key-Area Research and Development Program of Guangdong Province[Grant No.2018B090906002]。
文摘Solid-state nanopores with controllable pore size and morphology have huge application potential.However,it has been very challenging to process sub-10 nm silicon nanopore arrays with high efficiency and high quality at low cost.In this study,a method combining metal-assisted chemical etching and machine learning is proposed to fabricate sub-10 nm nanopore arrays on silicon wafers with various dopant types and concentrations.Through a SVM algorithm,the relationship between the nanopore structures and the fabrication conditions,including the etching solution,etching time,dopant type,and concentration,was modeled and experimentally verified.Based on this,a processing parameter window for generating regular nanopore arrays on silicon wafers with variable doping types and concentrations was obtained.The proposed machine-learning-assisted etching method will provide a feasible and economical way to process high-quality silicon nanopores,nanostructures,and devices.
文摘Directed self-assembly(DSA)emerges as one of the most promising new patterning techniques for single digit miniaturization and next generation lithography.DSA achieves high-resolution patterning by molecular assembly that circumvents the diffraction limit of conventional photolithography.Recently,the International Roadmap for Devices and Systems listed DSA as one of the advanced lithography techniques for the fabrication of 3-5 nm technology node devices.DSA can be combined with other lithography techniques,such as extreme ultra violet(EUV)and 193 nm immersion(193i),to further enhance the patterning resolution and the device density.So far,DSA has demonstrated its superior ability for the fabrication of nanoscale devices,such as fin field effect transistor and bit pattern media,offering a variety of configurations for high-density integration and low-cost manufacturing.Over 1 T in-2 device density can be achieved either by direct templating or coupled with nanoimprinting to improve the throughput.The development of high x block copolymer further enhances the patterning resolution of DSA.In addition to its superiority in high-resolution patterning,the implementation ofDSA on a 300 mm pivot line fully demonstrates its potential for large-scale,high-throughput,and cost-effective manufacturing in industrial environment.
基金the National Key Research and Development Program of China(Grant No.2016YFA0200504)the National Natural Science Foundation of China(Grant No.61927901)。
文摘A high quality epitaxial Si layer by molecular beam epitaxy(MBE)on Si(001)substrates was demonstrated to fabricate a channel with low density defects for high-performance Fin FET technology.In order to study the effects of fin width and crystallography orientation on the MBE behavior,a 30 nm thick Si layer was deposited on the top of an etched Si fin with different widths from 10 nm to 50 nm and orientations of 100 and 110.The result shows that a defect-free Si film was obtained on the fin by MBE,since the etching damage was confined in the bottom of the epitaxial layer.In addition,the vertical growth of the epitaxial Si layer was observed on sub-10 nm 100 Si fins,and this was explained by a kinetic mechanism.
文摘As short as 8.5 fs pulses have been generated from a home made self-start self-mode-locking Ti: sap-phire laser. With higher Ti dopped, shorter laser rod, lower third order group velocity dispersion prism pair, and larger gain modulation operation condition, the laser possesses the potential of generating sub-10 femtosecond.
文摘This paper describes the evaluation of trace element composition of atmospheric aerosol particles (PM<sub>2.5</sub> and PM<sub>10</sub>) and their influence on air quality in the largest industrial area of Abidjan city, C?te d’Ivoire. Multi-week sampling was conducted in an urban site (industrial area) in Abidjan from April 2018 to July 2019. The mean mass concentration was 48.83 ± 15.24 μg/m<sup>3</sup> for PM<sub>2.5</sub> and 77.34 ± 10.91 μg/m<sup>3</sup> for PM<sub>10</sub>, with significant temporal variability. The average ratio of PM<sub>2.5</sub>/PM<sub>10</sub> was 0.64 ± 0.21. The concentration of BC in PM<sub>2.5</sub> and PM<sub>10</sub> was respectively 52.32 ± 7.48 μg/m<sup>3</sup> and 52.26 ± 12.07 μg/m<sup>3</sup>. Twenty-two elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr and Pb were analysed by Energy Dispersive X-ray Fluorescence (EDXRF). Elemental composition data were modeled using principal component analysis (PCA) with varimax rotation to determine two (2) and four (4) dominant source categories contributing to PM<sub>2.5</sub> and PM<sub>10</sub> respectively. In the case of fine particles PM<sub>2.5</sub>, the possible sources were Industrial activities and non-exhaust emissions, exhaust emissions. The PM<sub>10</sub> sources were industrial activities and non-exhaust emissions, industrial processes, mineral dust, and waste combustion.
文摘Soil CO<sub>2</sub> efflux is an ongoing process of respiration from soil;plant parts/ microbes below the ground to the atmosphere which is known for faster cycling of carbon sources. A large portion of carbon sequestered and fixed by forests is returned to the atmosphere through soil CO<sub>2</sub> efflux and multiple controlling parameters mainly temperature, precipitation, and growth factors interact with the soil CO<sub>2</sub> efflux variation. This study assessed the soil CO<sub>2</sub> efflux every month for consecutive 2-years (August 2015 to July 2017) by using the closed chamber method to determine the role of ecological parameters that govern the soil CO<sub>2</sub> efflux and its temporal modification in a sub-tropical mixed forest of central region in Nepal. The results of this study manifested that soil CO<sub>2</sub> efflux accounted 63.2% (y = 31.96e<sup>0.128x</sup>), 71.3% (y = 44.77e<sup>0.123x</sup>) and 64.5% (y = 44.11e<sup>0.117x</sup>) variations in soil temperature with significantly (p < 0.05) exponential positive relation in the year 2015/2016, 2016/2017 and the two years when merged. And the temperature sensitivity value (Q<sub>10</sub>) of the soil CO<sub>2</sub> efflux was 3.6, 3.4, and 3.2, respectively. Soil water content also expressed significantly (p < 0.05) positive exponential effect on soil CO<sub>2</sub> efflux and accounted 62.0% (y = 138.3e<sup>0.057x</sup>), 46.1% (y = 88.42e<sup>0.052x</sup>) and 40.5% (y = 133.1e<sup>0.0447x</sup>) in its variability in different years and the merged years. Evident variations of soil CO<sub>2</sub> efflux, soil temperature, soil water content, and litter were observed in the forest seasonally and inter-annually. Two years mean total annual soil CO<sub>2</sub> efflux of the forest was estimated at 904.76 g C·m<sup>-2</sup>·y<sup>-1</sup>. The study revealed that sub-tropical forests could be more influenced by precipitation regimes in progressing warm climates i.e. vulnerable to climate change, illustrating the comprehensive dynamics of the representative forest carbon cycle in the tropical region.
基金Supported by the National Natural Science Foundation of China under Grant No 60578049, and the Major Basic Research Project of Shanghai Commission of Science and Technology under Grant No 04dz14001.
文摘We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52 fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12 fs.