Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of s...Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of seed germination. The results showed that as to the available rate of allelochemicals, the pressure and temperature of extraction were the most important factors. The allelochemicals of Chinese-fir root extracted by pure CO2 and ethanol mixed with CO2 have different allelopathic activities to seed germination, and the allelochemicals extracted by ethanol mixed with CO2 had stronger inhibitory effects on seed germination than that extracted by pure CO2.展开更多
Six newly synthesized racemic 1-(substituted phenyl)-4-[3-(indole-4-yl-oxy)-2-hydroxypropyl]-piperazine 1-6 were successfully resolved by carbon dioxide supercritical fluid chromatography (SFC) on an analytical ...Six newly synthesized racemic 1-(substituted phenyl)-4-[3-(indole-4-yl-oxy)-2-hydroxypropyl]-piperazine 1-6 were successfully resolved by carbon dioxide supercritical fluid chromatography (SFC) on an analytical scale column packed with immobilized polysaccharide-based chiral stationary phases (CSPs). We found that separation on the Chiralpak IA CSP was superior to the other two immobilized CSPs (Chiralpak IB and Chiralpak IC), and isopropanol (IPA) was a superior modifier compared to the other five solvents including ethanol, methanol, tetrahydrofuran, acetonitrile and dichloromethane. The effects of organic modifier composition, back pressure, and column temperature for enantioseparation of all six compounds were studied. Of the physical parameters studied, modifier composition had the greatest impact on retention. Changing temperature generally had less impact on retention but produced the greatest selectivity changes. The optimum condition was found as follows: Chiralpak IA column, column temperature 35 ~C, back pressure 120 bar, 35% IPA containing 0.1% diethylamine (v/v) in mobile phase, flow rate of mobile phase 3.0 mL/min, UV detection 283 nm. Separation of all six racemic compounds was completed within 10 rain and excellent resolution was obtained. Thus, SFC was found to be the methodology of choice for resolving the enantiomers of this class of compounds.展开更多
The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera. The experiments ...The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera. The experiments are accomplished at temperatures of 300-730 K under pressures from 0.107-5 MPa. Six distinctive two-phase flow patterns are observed in upward flow and the critical point of RP-3 is identified as critical pressure pc=2.33 MPa and critical temperature Tc=645.04 K and it is found that when the fluid pressure exceeds 2.33 MPa the flow can be considered as a single phase flow. The critical opalescence phenomenon of RP-3 is observed when the temperature is between 643.16 K and 648.61 K and the pressure is between 2.308 MPa and 2.366 MPa. The region filled by the critical opalescence in the upward flow is clearly larger than that in the downward flow due to the interaction between the buoyancy force and fluid inertia. Morecover, obvious layered flow phenomenon is observed in horizontal flow under supercritical pressures due to the differences of gravity and density.展开更多
In this study,sub-micrometer LiFePO_4 particles with high purity and crystallinity were synthesized using supercritical hydrothermal method as the cathode material for lithium ion batteries.Experimental results show t...In this study,sub-micrometer LiFePO_4 particles with high purity and crystallinity were synthesized using supercritical hydrothermal method as the cathode material for lithium ion batteries.Experimental results show that templates and calcination time have significant impacts on the purity,particle size and morphology of LiFePO_4 particles.The as-prepared LiFePO_4 particles using polyvinyl pyrrolidone(PVP) template with additional one hour calcination at 700℃exhibit characteristics of good crystallinity,uniform size distribution,high capacity and cycling performance.The specific discharge capacities of 141.2 and 114.0mA·h/g were obtained at the charge/discharge rates of 0.1 and 1.0 C,respectively.It retained 96.0%of an initial capacity after 100 cycles at 1.0 C rate.The good electrochemical performance of the as-synthesized material is attributed to the synergistic factors of its reasonable particle size and surface areas and high crystallinity.展开更多
Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) additi...Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 30(0-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L, and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively.展开更多
The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-63...The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.展开更多
Cotton cellulose was extracted with ethanol in sub-and supercritical states dynamically. The degree of conversion was 95.4% and the extract yield was 55.2% when cotton cellulose was non-isothermally extracted with eth...Cotton cellulose was extracted with ethanol in sub-and supercritical states dynamically. The degree of conversion was 95.4% and the extract yield was 55.2% when cotton cellulose was non-isothermally extracted with ethanol from 20°C to 400°C. From an engineering standpoint, in the temperature range from 200°C to 320°C, the rate of extract formation could adequately be described by a second-order reaction kinetics equation with the activation energy of 105.3 kJ/mol and the pre-exponential factor of 3.53×107 s?1. With the non-isothermal experimental technique, it was possible to determine the kinetic parameters; conversion degree and extract yield by one experiment.展开更多
Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures(350–650°C),feed concentrations(15–30 wt%)and reaction times(15–60 min).Nickel-impregnate...Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures(350–650°C),feed concentrations(15–30 wt%)and reaction times(15–60 min).Nickel-impregnated activated carbon(Ni/AC)was synthesized as a catalyst for enhancing syngas yields at optimal gasification conditions(650°C,15 wt%and 60 min).Structural chemistry of precursors and chars developed at different gasification temperatures was studied using physicochemical and synchrotronbased approaches such as carbon–hydrogen–nitrogen–sulfur(CHNS)analysis,thermogravimetric and differential thermogravimetric analysis(TGA/DTA),scanning electron microscopy(SEM),Fourier-Transform Infrared spectroscopy(FTIR),Raman spectroscopy,X-ray diffraction(XRD)and X-ray absorption spectroscopy(XAS).Asphaltene testified to be a better precursor for catalytic hydrothermal gasification leading to 11.97 mmol/g of total gas yield compared to petroleum coke(8.04 mmol/g).In particular,supercritical water gasification using 5 wt%Ni/AC at 650°C with 15 wt%feed concentration for 60 min resulted in 4.17 and 2.98 mmol/g of H_2from asphaltene and petroleum coke,respectively.Under the same conditions,the respective CH_4yields from catalytic gasification of asphaltene and petroleum coke were 2.54and 1.07 mmol/g.Nonetheless,asphaltene also seemed to an attractive feedstock for the production of highly aromatic chars through hydrothermal gasification.展开更多
The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to ob...The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.展开更多
This paper is to study a new method to remove sericin from raw silk fiber. This new process is done using an organic acid as a pretreatment and then using CO2 supercritical fluid to remove sericin from silk fiber. Thi...This paper is to study a new method to remove sericin from raw silk fiber. This new process is done using an organic acid as a pretreatment and then using CO2 supercritical fluid to remove sericin from silk fiber. This method would be a huge break from the traditional environmentally unsustainable methods used today. This new processing method keeps the removed sericin in a clean state that can be used as a highly marketable silk protein in the medical and cosmetic industries.展开更多
Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of ...Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of SC-CO_(2),the small scale of rock samples and synthetic materials used in many studies have limited a comprehensive understanding of fracture propagation in unconventional formations.In this study,cubic tight sandstone samples with dimensions of 300 mm were employed to conduct SC-CO_(2)fractu ring experiments under true-triaxial stre ss conditions.The spatial morphology and quantitative attributes of fracture induced by water and SC-CO_(2)fracturing were compared,while the impact of in-situ stress on fracture propagation was also investigated.The results indicate that the SCCO_(2)fracturing takes approximately ten times longer than water fracturing.Furthermore,under identical stress condition,the breakdown pressure(BP)for SC-CO_(2)fracturing is nearly 25%lower than that for water fracturing.A quantitative analysis of fracture morphology reveals that water fracturing typically produces relatively simple fracture pattern,with the primary fracture distribution predominantly controlled by bedding planes.In contrast,SC-CO_(2)fracturing results in a more complex fracture morphology.As the differential of horizontal principal stress increases,the BP for SC-CO_(2)fractured rock exhibits a downward trend,and the induced fracture morphology becomes more simplified.Moreover,the presence of abnormal in-situ stress leads to a further increase in the BP for SC-CO_(2)fracturing,simultaneously enhancing the development of a more conductive fracture network.These findings provide critical insights into the efficiency and behavior of SC-CO_(2)fracturing in comparison to traditional water-based fracturing,offering valuable implication for its potential applications in unconventional reservoirs.展开更多
The high-pressure phase behavior of coating-solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally. The coating matrix used was 108-acrylic resin at concentration ranging from 10% ...The high-pressure phase behavior of coating-solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally. The coating matrix used was 108-acrylic resin at concentration ranging from 10% to 50% (by mass) in mixtures with n-butyl acetate. The experiments were conducted in a high-pressure view cell for temperatures from 35℃ to 65℃ and for pressures from 3.0MPa to 8.0MPa. The effect of temperature, pressure and content of every component on the phase behavior of the systems was observed. Finally, the ternary phase diagram for resin-solvent-CO2 was plotted.展开更多
With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,sha...With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.展开更多
In this study, with borneol fragments in the crystallized mother liquor of natural borneol used as the raw materials, supercritical carbon dioxide method is adopted for refining to get high purity borneol. The result ...In this study, with borneol fragments in the crystallized mother liquor of natural borneol used as the raw materials, supercritical carbon dioxide method is adopted for refining to get high purity borneol. The result of the experiment shows that the yield and purity are excellent with an extraction pressure of 11 MPa, an extracting temperature of 40°C, a carbon dioxide flow rate of 25 L·h<sup>-</sup><sup>1</sup> and an extraction time of 20 minutes. After detected by gas chromatography, the purity of the crystallization products could reach 96%.展开更多
A supercritical hydrothermal method was employed to prepare sub-micrometer LiFePO4particles with high purity and crystallinity.The structure and morphology of LiFePO4particles were characterized by X-ray diffraction a...A supercritical hydrothermal method was employed to prepare sub-micrometer LiFePO4particles with high purity and crystallinity.The structure and morphology of LiFePO4particles were characterized by X-ray diffraction and scanning electron microscope.The electrochemical tests were carried out to determine the reversible capacity,rate and cycling performance of the LiFePO4particles as cathode material for lithium ion battery.Experimental results show that solvent and calcining time have significant effects on purity,size and morphology of LiFePO4particles.Mixed solvent contained deionized water and ethanol is conducive to synthesize smaller and more uniform particles.The size of LiFePO4particles as-prepared is about 100-300 nm.The specific discharge capacities of the LiFePO4particles are 151.3 and 128.0 mA·h·g?1 after first cycle at the rates of 0.1 and 1.0 C,respectively.It retains 95.0%of the initial capacity after 100 cycles at 1.0 C.展开更多
Temperature and pressure, both of which can affect the supersaturation and nucleation are responsible for solvents properties. In this study, we use water as solvent under supercritical conditions and report copper (C...Temperature and pressure, both of which can affect the supersaturation and nucleation are responsible for solvents properties. In this study, we use water as solvent under supercritical conditions and report copper (Cu) and (Cu2O) nanoparticles of size ranging from 9nm to 60nms. This synthetic technique has the following advantages: Firstly, it is one step synthesis approach, making it easy to control the growth kinetics. Secondly, the synthesis needs no sophisticated equipments. Thirdly, the approach is non-toxic without producing hazardous waste as water is being used as solvent as well as source of oxygen. Forth, it is a surfactant free synthesis and has bright prospects.展开更多
This study reports the extraction of <i>Jatropha curcas</i> leaves using supercritical CO<sub>2</sub>. Experiments were performed varying the pressure (13 and 20 MPa) and the temperature (50...This study reports the extraction of <i>Jatropha curcas</i> leaves using supercritical CO<sub>2</sub>. Experiments were performed varying the pressure (13 and 20 MPa) and the temperature (50°C and 60°C). The model of Sovová for supercritical fluid extraction was fitted to the experimental kinetic extraction curves. Two cell sizes were used and scale up equations compared. GC analysis showed phytol, carvacrol, and hexahydrofarnesyl acetone as major compounds in all the experiments. A maximum yield of 0.95% dry-weight basis was obtained. It was observed a maximum yield (0.95% dry-weight basis) extract obtained at 20 MPa and 50°C. The results indicated that the mass yield increased with the increase of pressure. The bioassays showed that the extract of <i>J. curcas</i> possessed toxicity against <i>Hyalomma lusitanicum</i>.展开更多
High-water-cut mature reservoirs typically serve as the“ballast”for ensuring China’s annual crude oil production of 200 million tons.Despite the use of water flooding and chemical methods,over 40%of crude oil remai...High-water-cut mature reservoirs typically serve as the“ballast”for ensuring China’s annual crude oil production of 200 million tons.Despite the use of water flooding and chemical methods,over 40%of crude oil remains unexploited.It is critical to develop efficient revolutionary technologies to further enhance oil recovery(EOR)by a large percentage in high-water-cut mature reservoirs.To address this issue,the potential of vertical remaining oil in Daqing Oilfield is first analyzed from massive monitoring data.Using molecular dynamics simulation to design optimal synthetic routine,a copolymer without flu-orine or silicon is synthesized by modifying vinyl acetate(VAc)with maleic anhydride(MA)and styrene(St),and treated as a supercritical CO_(2)(scCO_(2))thickener.The underlying EOR mechanism of the scCO_(2) thickener is thereafter clarified by high-temperature,high-pressure oil displacement experiments.The EOR effect by thickened scCO_(2) flooding in a typical high-water-cut mature reservoir is predicted,and future technological advancements of the technique are ultimately discussed.Results show that the ver-tical remaining oil enriched in weakly swept zones is a primary target for further EOR in high-water-cut mature reservoirs.The copolymer typically exhibits good solubility,strong dispersion stability,and high thickening effect in scCO_(2).Under an ambient pressure of 10 MPa and a temperature of 50℃,the disso-lution of copolymer at a mass concentration of 0.2%can effectively increase the viscosity of scCO_(2) by 39.4 times.Due to the synergistic effect between expanding vertical swept volume and inhibiting gas channel-ing,crude oil recovery can be further enhanced by 23.1%for a typical high-water-cut mature reservoir when the scCO_(2) viscosity is increased by 50 times.Our understandings demonstrate that the thickened scCO_(2) flooding technology has significant technical advantages in high-water-cut mature reservoirs,with challenges and future development directions in field-scale applications also highlighted.展开更多
The phase behaviors of toluene/polycyclic aromatic hydrocarbon mixture systems were investigated with a continuous-flow type apparatus at 573.2, 598.2, 623.2 and 648.2 K, while the pressure changed from 1 to 5MPa. The...The phase behaviors of toluene/polycyclic aromatic hydrocarbon mixture systems were investigated with a continuous-flow type apparatus at 573.2, 598.2, 623.2 and 648.2 K, while the pressure changed from 1 to 5MPa. The pseudo-binary phase behaviors were predicted with the Peng-Robinson equation of state with interaction parameters between toluene and pseudo-components considered. The phase diagrams of the system have been classified following the category of phase boundary diagram models. The extraction selectivity and efficiency of tolu-ene as a solvent was discussed by comparing with that of hexane. The prediction model for selectivity was also suggested.展开更多
We consider the multiplicity of solutions to a p(x)-Laplacian problem involving supercritical Sobolev growth via Ricceri’s principle.By means of truncation combined with De Giorgi iteration,we can extend the results ...We consider the multiplicity of solutions to a p(x)-Laplacian problem involving supercritical Sobolev growth via Ricceri’s principle.By means of truncation combined with De Giorgi iteration,we can extend the results of subcritical and critical growth to supercritical growth and obtain at least three solutions to the p(x)-Laplacian problem.展开更多
基金This paper was supported by Natural Science Foundation of Fujian Province (B0010020)
文摘Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of seed germination. The results showed that as to the available rate of allelochemicals, the pressure and temperature of extraction were the most important factors. The allelochemicals of Chinese-fir root extracted by pure CO2 and ethanol mixed with CO2 have different allelopathic activities to seed germination, and the allelochemicals extracted by ethanol mixed with CO2 had stronger inhibitory effects on seed germination than that extracted by pure CO2.
基金Science and Technology Program of Guangzhou City(Grant No.2010U1-E0531-2)
文摘Six newly synthesized racemic 1-(substituted phenyl)-4-[3-(indole-4-yl-oxy)-2-hydroxypropyl]-piperazine 1-6 were successfully resolved by carbon dioxide supercritical fluid chromatography (SFC) on an analytical scale column packed with immobilized polysaccharide-based chiral stationary phases (CSPs). We found that separation on the Chiralpak IA CSP was superior to the other two immobilized CSPs (Chiralpak IB and Chiralpak IC), and isopropanol (IPA) was a superior modifier compared to the other five solvents including ethanol, methanol, tetrahydrofuran, acetonitrile and dichloromethane. The effects of organic modifier composition, back pressure, and column temperature for enantioseparation of all six compounds were studied. Of the physical parameters studied, modifier composition had the greatest impact on retention. Changing temperature generally had less impact on retention but produced the greatest selectivity changes. The optimum condition was found as follows: Chiralpak IA column, column temperature 35 ~C, back pressure 120 bar, 35% IPA containing 0.1% diethylamine (v/v) in mobile phase, flow rate of mobile phase 3.0 mL/min, UV detection 283 nm. Separation of all six racemic compounds was completed within 10 rain and excellent resolution was obtained. Thus, SFC was found to be the methodology of choice for resolving the enantiomers of this class of compounds.
基金National Natural Science Foundation of China(50676005)
文摘The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera. The experiments are accomplished at temperatures of 300-730 K under pressures from 0.107-5 MPa. Six distinctive two-phase flow patterns are observed in upward flow and the critical point of RP-3 is identified as critical pressure pc=2.33 MPa and critical temperature Tc=645.04 K and it is found that when the fluid pressure exceeds 2.33 MPa the flow can be considered as a single phase flow. The critical opalescence phenomenon of RP-3 is observed when the temperature is between 643.16 K and 648.61 K and the pressure is between 2.308 MPa and 2.366 MPa. The region filled by the critical opalescence in the upward flow is clearly larger than that in the downward flow due to the interaction between the buoyancy force and fluid inertia. Morecover, obvious layered flow phenomenon is observed in horizontal flow under supercritical pressures due to the differences of gravity and density.
基金the Fundamental Research Funds for the Central Universities of China(No.DUT11NY08)
文摘In this study,sub-micrometer LiFePO_4 particles with high purity and crystallinity were synthesized using supercritical hydrothermal method as the cathode material for lithium ion batteries.Experimental results show that templates and calcination time have significant impacts on the purity,particle size and morphology of LiFePO_4 particles.The as-prepared LiFePO_4 particles using polyvinyl pyrrolidone(PVP) template with additional one hour calcination at 700℃exhibit characteristics of good crystallinity,uniform size distribution,high capacity and cycling performance.The specific discharge capacities of 141.2 and 114.0mA·h/g were obtained at the charge/discharge rates of 0.1 and 1.0 C,respectively.It retained 96.0%of an initial capacity after 100 cycles at 1.0 C rate.The good electrochemical performance of the as-synthesized material is attributed to the synergistic factors of its reasonable particle size and surface areas and high crystallinity.
文摘Hydrothermal decomposition of pentachlorophenol (PCP, C6HC150), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 30(0-420℃ and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L, and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively.
文摘The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.
文摘Cotton cellulose was extracted with ethanol in sub-and supercritical states dynamically. The degree of conversion was 95.4% and the extract yield was 55.2% when cotton cellulose was non-isothermally extracted with ethanol from 20°C to 400°C. From an engineering standpoint, in the temperature range from 200°C to 320°C, the rate of extract formation could adequately be described by a second-order reaction kinetics equation with the activation energy of 105.3 kJ/mol and the pre-exponential factor of 3.53×107 s?1. With the non-isothermal experimental technique, it was possible to determine the kinetic parameters; conversion degree and extract yield by one experiment.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Research Chair program for funding this bioenergy research
文摘Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures(350–650°C),feed concentrations(15–30 wt%)and reaction times(15–60 min).Nickel-impregnated activated carbon(Ni/AC)was synthesized as a catalyst for enhancing syngas yields at optimal gasification conditions(650°C,15 wt%and 60 min).Structural chemistry of precursors and chars developed at different gasification temperatures was studied using physicochemical and synchrotronbased approaches such as carbon–hydrogen–nitrogen–sulfur(CHNS)analysis,thermogravimetric and differential thermogravimetric analysis(TGA/DTA),scanning electron microscopy(SEM),Fourier-Transform Infrared spectroscopy(FTIR),Raman spectroscopy,X-ray diffraction(XRD)and X-ray absorption spectroscopy(XAS).Asphaltene testified to be a better precursor for catalytic hydrothermal gasification leading to 11.97 mmol/g of total gas yield compared to petroleum coke(8.04 mmol/g).In particular,supercritical water gasification using 5 wt%Ni/AC at 650°C with 15 wt%feed concentration for 60 min resulted in 4.17 and 2.98 mmol/g of H_2from asphaltene and petroleum coke,respectively.Under the same conditions,the respective CH_4yields from catalytic gasification of asphaltene and petroleum coke were 2.54and 1.07 mmol/g.Nonetheless,asphaltene also seemed to an attractive feedstock for the production of highly aromatic chars through hydrothermal gasification.
基金Project supported by the National Natural Science Foundation of China (No.10772202)the Doctoral Foundation of Ministry of Education of China (No.20050558032)the Natural Science Foundation of Guangdong Province (Nos.07003680 and 05003295)
文摘The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are Used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.
文摘This paper is to study a new method to remove sericin from raw silk fiber. This new process is done using an organic acid as a pretreatment and then using CO2 supercritical fluid to remove sericin from silk fiber. This method would be a huge break from the traditional environmentally unsustainable methods used today. This new processing method keeps the removed sericin in a clean state that can be used as a highly marketable silk protein in the medical and cosmetic industries.
基金funded by the National Natural Scientific Foundation of China(Nos.52304008,52404038,52474043)the China Postdoctoral Science Foundation(No.2023MD734223)+1 种基金the Key Laboratory of Well Stability and Fluid&Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province(No.23JS047)the Youth Talent Lifting Program of Xi'an Science and Technology Association(No.959202413078)。
文摘Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of SC-CO_(2),the small scale of rock samples and synthetic materials used in many studies have limited a comprehensive understanding of fracture propagation in unconventional formations.In this study,cubic tight sandstone samples with dimensions of 300 mm were employed to conduct SC-CO_(2)fractu ring experiments under true-triaxial stre ss conditions.The spatial morphology and quantitative attributes of fracture induced by water and SC-CO_(2)fracturing were compared,while the impact of in-situ stress on fracture propagation was also investigated.The results indicate that the SCCO_(2)fracturing takes approximately ten times longer than water fracturing.Furthermore,under identical stress condition,the breakdown pressure(BP)for SC-CO_(2)fracturing is nearly 25%lower than that for water fracturing.A quantitative analysis of fracture morphology reveals that water fracturing typically produces relatively simple fracture pattern,with the primary fracture distribution predominantly controlled by bedding planes.In contrast,SC-CO_(2)fracturing results in a more complex fracture morphology.As the differential of horizontal principal stress increases,the BP for SC-CO_(2)fractured rock exhibits a downward trend,and the induced fracture morphology becomes more simplified.Moreover,the presence of abnormal in-situ stress leads to a further increase in the BP for SC-CO_(2)fracturing,simultaneously enhancing the development of a more conductive fracture network.These findings provide critical insights into the efficiency and behavior of SC-CO_(2)fracturing in comparison to traditional water-based fracturing,offering valuable implication for its potential applications in unconventional reservoirs.
基金Supported by the Natural Science Foundation of Beijing(No.2992015)the National Natural Science Foundation ofChina.(No.20076004) and the Research Fund for the Doctoral Program of Higher Education(No.2000001005).
文摘The high-pressure phase behavior of coating-solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally. The coating matrix used was 108-acrylic resin at concentration ranging from 10% to 50% (by mass) in mixtures with n-butyl acetate. The experiments were conducted in a high-pressure view cell for temperatures from 35℃ to 65℃ and for pressures from 3.0MPa to 8.0MPa. The effect of temperature, pressure and content of every component on the phase behavior of the systems was observed. Finally, the ternary phase diagram for resin-solvent-CO2 was plotted.
文摘With the increasing demand for energy,traditional oil resources are facing depletion and insufficient supply.Many countries are rapidly turning to the development of unconventional oil and gas resources.Among them,shale oil and gas reservoirs have become the focus of unconventional oil and gas resources exploration and development.Based on the characteristics of shale oil and gas reservoirs,supercritical CO_(2) fracturing is more conducive to improving oil recovery than other fracturing technologies.In this paper,the mechanism of fracture initiation and propagation of supercritical CO_(2) in shale is analyzed,including viscosity effect,surface tension effect,permeation diffusion effect of supercritical CO_(2),and dissolution-adsorption effect between CO_(2) and shale.The effects of natural factors,such as shale properties,bedding plane and natural fractures,and controllable factors,proppant,temperature,pressure,CO_(2) concentration and injection rate on fracture initiation and propagation are clarified.The methods of supercritical CO_(2) fracturing process,thickener and proppant optimization to improve the efficiency of supercritical CO_(2) fracturing are discussed.In addition,some new technologies of supercritical CO_(2) fracturing are introduced.The challenges and prospects in the current research are also summarized.For example,supercritical CO_(2) is prone to filtration when passing through porous media,and it is difficult to form a stable flow state.Therefore,in order to achieve stable fracturing fluid suspension and effectively support fractu res,it is urge nt to explo re new fracturing fluid additives or improve fracturing fluid formulations combined with the research of new proppants.This paper is of great significance for understanding the behavior mechanism of supercritical CO_(2) in shale and optimizing fracturing technology.
文摘In this study, with borneol fragments in the crystallized mother liquor of natural borneol used as the raw materials, supercritical carbon dioxide method is adopted for refining to get high purity borneol. The result of the experiment shows that the yield and purity are excellent with an extraction pressure of 11 MPa, an extracting temperature of 40°C, a carbon dioxide flow rate of 25 L·h<sup>-</sup><sup>1</sup> and an extraction time of 20 minutes. After detected by gas chromatography, the purity of the crystallization products could reach 96%.
文摘A supercritical hydrothermal method was employed to prepare sub-micrometer LiFePO4particles with high purity and crystallinity.The structure and morphology of LiFePO4particles were characterized by X-ray diffraction and scanning electron microscope.The electrochemical tests were carried out to determine the reversible capacity,rate and cycling performance of the LiFePO4particles as cathode material for lithium ion battery.Experimental results show that solvent and calcining time have significant effects on purity,size and morphology of LiFePO4particles.Mixed solvent contained deionized water and ethanol is conducive to synthesize smaller and more uniform particles.The size of LiFePO4particles as-prepared is about 100-300 nm.The specific discharge capacities of the LiFePO4particles are 151.3 and 128.0 mA·h·g?1 after first cycle at the rates of 0.1 and 1.0 C,respectively.It retains 95.0%of the initial capacity after 100 cycles at 1.0 C.
文摘Temperature and pressure, both of which can affect the supersaturation and nucleation are responsible for solvents properties. In this study, we use water as solvent under supercritical conditions and report copper (Cu) and (Cu2O) nanoparticles of size ranging from 9nm to 60nms. This synthetic technique has the following advantages: Firstly, it is one step synthesis approach, making it easy to control the growth kinetics. Secondly, the synthesis needs no sophisticated equipments. Thirdly, the approach is non-toxic without producing hazardous waste as water is being used as solvent as well as source of oxygen. Forth, it is a surfactant free synthesis and has bright prospects.
文摘This study reports the extraction of <i>Jatropha curcas</i> leaves using supercritical CO<sub>2</sub>. Experiments were performed varying the pressure (13 and 20 MPa) and the temperature (50°C and 60°C). The model of Sovová for supercritical fluid extraction was fitted to the experimental kinetic extraction curves. Two cell sizes were used and scale up equations compared. GC analysis showed phytol, carvacrol, and hexahydrofarnesyl acetone as major compounds in all the experiments. A maximum yield of 0.95% dry-weight basis was obtained. It was observed a maximum yield (0.95% dry-weight basis) extract obtained at 20 MPa and 50°C. The results indicated that the mass yield increased with the increase of pressure. The bioassays showed that the extract of <i>J. curcas</i> possessed toxicity against <i>Hyalomma lusitanicum</i>.
基金the National Natural Science Foundation of China(U22B6005,52174043,52474035)the Beijing Natural Science Foundation(3242019)the China National Petroleum Corporation(CNPC)Innovation Foundation(2022DQ02-0208 and 2024DQ02-0114).
文摘High-water-cut mature reservoirs typically serve as the“ballast”for ensuring China’s annual crude oil production of 200 million tons.Despite the use of water flooding and chemical methods,over 40%of crude oil remains unexploited.It is critical to develop efficient revolutionary technologies to further enhance oil recovery(EOR)by a large percentage in high-water-cut mature reservoirs.To address this issue,the potential of vertical remaining oil in Daqing Oilfield is first analyzed from massive monitoring data.Using molecular dynamics simulation to design optimal synthetic routine,a copolymer without flu-orine or silicon is synthesized by modifying vinyl acetate(VAc)with maleic anhydride(MA)and styrene(St),and treated as a supercritical CO_(2)(scCO_(2))thickener.The underlying EOR mechanism of the scCO_(2) thickener is thereafter clarified by high-temperature,high-pressure oil displacement experiments.The EOR effect by thickened scCO_(2) flooding in a typical high-water-cut mature reservoir is predicted,and future technological advancements of the technique are ultimately discussed.Results show that the ver-tical remaining oil enriched in weakly swept zones is a primary target for further EOR in high-water-cut mature reservoirs.The copolymer typically exhibits good solubility,strong dispersion stability,and high thickening effect in scCO_(2).Under an ambient pressure of 10 MPa and a temperature of 50℃,the disso-lution of copolymer at a mass concentration of 0.2%can effectively increase the viscosity of scCO_(2) by 39.4 times.Due to the synergistic effect between expanding vertical swept volume and inhibiting gas channel-ing,crude oil recovery can be further enhanced by 23.1%for a typical high-water-cut mature reservoir when the scCO_(2) viscosity is increased by 50 times.Our understandings demonstrate that the thickened scCO_(2) flooding technology has significant technical advantages in high-water-cut mature reservoirs,with challenges and future development directions in field-scale applications also highlighted.
文摘The phase behaviors of toluene/polycyclic aromatic hydrocarbon mixture systems were investigated with a continuous-flow type apparatus at 573.2, 598.2, 623.2 and 648.2 K, while the pressure changed from 1 to 5MPa. The pseudo-binary phase behaviors were predicted with the Peng-Robinson equation of state with interaction parameters between toluene and pseudo-components considered. The phase diagrams of the system have been classified following the category of phase boundary diagram models. The extraction selectivity and efficiency of tolu-ene as a solvent was discussed by comparing with that of hexane. The prediction model for selectivity was also suggested.
基金supported by the Fundamental Research Funds for the Central Universities(2024KYJD2006).
文摘We consider the multiplicity of solutions to a p(x)-Laplacian problem involving supercritical Sobolev growth via Ricceri’s principle.By means of truncation combined with De Giorgi iteration,we can extend the results of subcritical and critical growth to supercritical growth and obtain at least three solutions to the p(x)-Laplacian problem.