This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequent...This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequently, lower total losses of the transmission system. The fundamental concept and the applied control scheme are introduced in detail. A modified multilevel fundamental switching modulation scheme adopting the multicarrier pulse width modulation concept is presented. A capacitor voltage balancing technique is proposed. With the established simulation model of the 11-level MMC, the modulation and balancing strategy presented are confirmed by MATLAB/SIMULINK simulations. The multicarrier pulse width modulation converter strategy enhances the fundamental output voltage and reduces total harmonic distortion. This new type of converter is suitable for high-voltage drive systems and power system applications such as high voltage dc (HVDC) transmission, reactive power compensation equipment and so on.展开更多
文摘This paper presents a new modular multilevel converter (MMC) topology. Compared to conventional multilevel converters, MMC has much lower switching frequency (50 Hz) resulting in lower switching losses, and consequently, lower total losses of the transmission system. The fundamental concept and the applied control scheme are introduced in detail. A modified multilevel fundamental switching modulation scheme adopting the multicarrier pulse width modulation concept is presented. A capacitor voltage balancing technique is proposed. With the established simulation model of the 11-level MMC, the modulation and balancing strategy presented are confirmed by MATLAB/SIMULINK simulations. The multicarrier pulse width modulation converter strategy enhances the fundamental output voltage and reduces total harmonic distortion. This new type of converter is suitable for high-voltage drive systems and power system applications such as high voltage dc (HVDC) transmission, reactive power compensation equipment and so on.
文摘模块化多电平换流器(modular multilevel converter,MMC)近年来得到了广泛的发展与应用。电容器是MMC中子模块(sub-module,SM)的重要组成部分与关键元件,承担直流支撑与储能工作。为保证MMC系统的安全可靠运行,有必要对子模块电容器状态监测方法展开研究。基于MMC系统运行特性,提出一种在工频周期内对子模块电压进行多相位点采样,并结合系统控制侧开关信号、调制比与交流侧电流电压幅值、相位等信息构建电压电流状态方程,以求解电容值与等效串联电阻(equivalent series resistance,ESR)值等状态特征参量的子模块电容器状态监测方法。随后搭建单相七电平MMC系统仿真平台与半实物仿真平台,对上述方法的可行性与准确性进行验证。仿真结果表明子模块电容器C值监测误差绝对值小于0.03%,ESR值监测误差绝对值小于0.5%。实验结果表明C值监测误差绝对值小于1.5%,ESR值监测误差小于10%,满足子模块电容器状态监测要求。