The experimental realization of observable phonon angular momentum(PAM)in feasible systems using relatively simple methods remains a critical challenge.Motivated by the chiral-induced spin selectivity effect,this stud...The experimental realization of observable phonon angular momentum(PAM)in feasible systems using relatively simple methods remains a critical challenge.Motivated by the chiral-induced spin selectivity effect,this study explores the generation of PAM during the transport of electrically driven polarons along a singlestranded helix structure.We demonstrate that the motion of a polaron under an applied electric field inherently induces a finite PAM,exhibiting drift-locked behavior between the PAM and the polaron.By analyzing the time evolution of PAM distribution at each site,we identify the observed PAM as a natural consequence of coherent superposition between lattice waves,in which the chiral structure selectively determines the direction of induced PAM.Furthermore,we examine the roles of two types of electron-phonon interactions and structural periodicity in modulating PAM.These findings highlight the potential of chiral molecules as platforms for PAM generation and offer new insights into developing phonon-spin-based devices for information processing and transmission.展开更多
The cold atom qubit platform emerges as an attractive choice for the next stage of quantum computation research,where a special family of synthetic analytical pulses has considerably improved the experimental performa...The cold atom qubit platform emerges as an attractive choice for the next stage of quantum computation research,where a special family of synthetic analytical pulses has considerably improved the experimental performance of Controlled-PHASE Rydberg blockade gates in recent studies.The success of Controlled-PHASE Rydberg blockade gates triggers the intriguing question of whether the two-qubit Rydberg blockade gate SWAP gate exists.Via investigating the transition linkage structure,we provide a definitive answer to this question and establish the method of fast SWAP Rydberg blockade gates with synthetic continuously modulated driving.These gate protocols use careful analysis to properly generate coherent population transfer and phase accumulation of the wave function in the atom-laser interaction process.They can adapt to finite Rydberg blockade strengths and bear considerable resistance to some major adverse effects such as laser fluctuations.Further examinations reveal that we can anticipate satisfying performances of the method with currently available experimental techniques in relevant research areas.展开更多
基金supported by the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)the National Natural Science Foundation of China(Grant No.52350088)+1 种基金the Department of Science and Technology of Jiangsu Province(Grant No.BK20220032)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX241797)。
文摘The experimental realization of observable phonon angular momentum(PAM)in feasible systems using relatively simple methods remains a critical challenge.Motivated by the chiral-induced spin selectivity effect,this study explores the generation of PAM during the transport of electrically driven polarons along a singlestranded helix structure.We demonstrate that the motion of a polaron under an applied electric field inherently induces a finite PAM,exhibiting drift-locked behavior between the PAM and the polaron.By analyzing the time evolution of PAM distribution at each site,we identify the observed PAM as a natural consequence of coherent superposition between lattice waves,in which the chiral structure selectively determines the direction of induced PAM.Furthermore,we examine the roles of two types of electron-phonon interactions and structural periodicity in modulating PAM.These findings highlight the potential of chiral molecules as platforms for PAM generation and offer new insights into developing phonon-spin-based devices for information processing and transmission.
基金Science and Technology Commission of Shanghai Municipality(24DP2600202)National Key Research and Development Program of China(2024YFB4504002)National Natural Science Foundation of China(92165107)。
文摘The cold atom qubit platform emerges as an attractive choice for the next stage of quantum computation research,where a special family of synthetic analytical pulses has considerably improved the experimental performance of Controlled-PHASE Rydberg blockade gates in recent studies.The success of Controlled-PHASE Rydberg blockade gates triggers the intriguing question of whether the two-qubit Rydberg blockade gate SWAP gate exists.Via investigating the transition linkage structure,we provide a definitive answer to this question and establish the method of fast SWAP Rydberg blockade gates with synthetic continuously modulated driving.These gate protocols use careful analysis to properly generate coherent population transfer and phase accumulation of the wave function in the atom-laser interaction process.They can adapt to finite Rydberg blockade strengths and bear considerable resistance to some major adverse effects such as laser fluctuations.Further examinations reveal that we can anticipate satisfying performances of the method with currently available experimental techniques in relevant research areas.