An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coeffic...An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coefficients can be determined with response spectral analysis. The optimization method degenerates into the conventional method used in current practices when only two modes of vibration are included in the objective function. Therefore, the proposed method with all significant modes included for simplicity in practical applications results in suboptimal damping coefficients. The effects of both spatial distribution and frequency content of excitations as well as structural dynamic characteristics on the evaluation of Rayleigh damping coefficients were investigated with a five-story building structure. Two application examples with a 62-story high-rise building and a 840 m long cable-stayed bridge under ten earthquake excitations demonstrated the accuracy and effectiveness of the proposed method to account for all of the above effects.展开更多
In the tubular frames with simple joints, the joints may show considerable local flexibility, which causes excessive deformation and affects internal force distributions. It is useful and important to study turbular j...In the tubular frames with simple joints, the joints may show considerable local flexibility, which causes excessive deformation and affects internal force distributions. It is useful and important to study turbular joint flexibility as well as the effect of joint local flexibility on the global behavior of tubular structure for the design and building of offshore platforms. A new method for computing the stiffness coefficients of simple tubular joints is developed in this paper based on two previous computing models. According to this method, the local flexibility of T, Y, TY tubular joints are computed. This method has merits of clear physical sense, simplicity of computations and less c.p.u. time. The effect of flexibility of tubular joints on the global behavior of framed tubular structures is investigated by comparing the computed results of tubular structures with flexible tubular joints with those with rigid connections. The comparison shows that the consideration of local flexibility of tubular joints and its effect on the stress analysis of offshore structures has its practical significance.展开更多
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underg...In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underground structures is derived, and the generalized variational principle of nonconservative system is given, thus the fundamental of dynamical analysis for underground structures to resist blast is proposed. Finally, for the underground cylindrical structure to resist blast, dynamical calculations are made, and compared with the test results.展开更多
The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment...The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment and design ground motion development:a. the development of regional seismo-tectonic model with seismic source areas within 500 km radius centered to the site;b. the development of strong motion prediction equations; c. logic three development for taking into account uncertainties and seismic hazard quantification;d. the development of uniform hazard response spectra for ground motion at the site;e. simulation of acceleration time histories compatible with uniform hazard response spectra. The following phase two in seismic design of NPP structures is the analysis of structural response for the design ground motion. This second phase of the process consists of the following steps:a. development of structural models of the plant buildings;b. development of the soil model underneath the plant buildings for soilstructure interaction response analysis;c. determination of instructure response spectra for the plant buildings for the equipment response analysis. In the third phase of the seismic design and analysis the equipment is analyzed on the basis of in-structure response spectra. For this purpose the structural models of the mechanical components and piping in the plant are set up. In large 3D-structural models used today the heaviest equipment of the primary coolant circuit is included in the structural model of the reactor building. In the fourth phase the electrical equipment and automation and control equipment are seismically qualified with the aid of the in-structure spectra developed in the phase two using large three-axial shaking tables. For this purpose the smoothed envelope spectra for calculated in-structure spectra are constructed and acceleration time is fitted to these smoothed envelope spectra.展开更多
During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, d...During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective.展开更多
This paper presents a set of fundamental equations for reliability analysis of single-critical-point aircraft structures.The mathematical model is formulated by considering the following factors:the static strength of...This paper presents a set of fundamental equations for reliability analysis of single-critical-point aircraft structures.The mathematical model is formulated by considering the following factors:the static strength of structure,initial crack,the initiation and propagation and unstability of fatigue crack,the residual strength of structure,the statistical distribution of load,the periods of overhaul,accident damage,the communication of damage among fleets etc.Based on this mathematical model,the influence of these factors on the reliability can be quantitatively analyzed,and various criteria for fatigue design of aircraft structures can be evaluated from the aspect of reliability.展开更多
Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equa...Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equations of motion is given for the viscoelastically damped structures.An iteration method for solving nonlinear eigenvalue problems is suggested to analyze the dynamic behavior of viscoelastically damped structures. The method has been applied to the complex model analysis of a sandwich cantilever beam with viscoelastic damping material core.展开更多
Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root findi...Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.展开更多
In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,l...In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,land resources can be minimized by this interlace concept for residential complexes.Such buildings will eliminate the reduction of land resource problem and on the other side safety measures in structural design is incorporated by interlace concept of buildings.This new concept can be constructed steel or reinforced concrete.In this paper,an analytical approach has been presented for these buildings in architecture and structural design.In the research,design considerations were taken for interlaced structures with reinforced concrete and steel.Components of steel structure,isolated footing,and columns.This paper is presenting a step wise process for interlaced structures.They are identification of project area,layout and model preparation,analysis and design of concrete interlaced structure,analysis and design of steel interlaced structure,drafting of the plans and costing and estimation of the structures.Comparison of both reinforced concrete and steel structures were carried out.The main aim of the paper is to provide a comparison between steel and concrete interlaced structure.A cost estimation was carried out to determine optimum design and construction for interlaced structures.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, same further understanding of the shakedown ...It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, same further understanding of the shakedown theorem for kinematic hardening materials has been made, and it is applied to analyze the shakedown of shell structures Though the residual stress of a real stale is related to plastic strain, the time-independent residual stress field as we will show in the theorem may be unrelated to the time-independent kinematically admissible plastic strain field For the engineering application, it will lie much more convenient to point this out clearly and definitely, otherwise it will be very difficult. Also, we have proposed a new method of proving this theorem.The above theorem is applied to the shakedown analysis of a cylindrical shell with hemispherical ends. According to the elastic solution, various possible residual sfcss and plastic strain Jlelds, the shakedown analysis of the structure can be reduced to a mathematical programming problem.The results of calculation show that the shakedown load oj strain hardening materials is about 30-40% higher than that of ideal plastic materials. So it is very important to consider the hardening of materials in the shakedown analysis,for it can greatly increase the structure design capacity, and meanwhile provide ascicntific basis to improve the design of shell structures.展开更多
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin...The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.展开更多
Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challeng...Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data).展开更多
In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher ac...In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods.展开更多
[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and Inte...[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and InterPro Scan were adopted to analyze the structure and predict its function.[Result] HpaGXoo consists of 139 amino acids,and has many alpha-helical and coiled structure,no signal peptide on N-terminal and no transmembrane structure.It locates in bacterial cytoplasm.[Conclusion] The study will lay ...展开更多
Water-soluble crude polyseccharide(PIP) was extracted from cultured mycelium of the fungus Phellinus igniarius. After ethanol precipitation and sepharose CL-6B gel filtration, the fraction of PIP1 was obtained, whic...Water-soluble crude polyseccharide(PIP) was extracted from cultured mycelium of the fungus Phellinus igniarius. After ethanol precipitation and sepharose CL-6B gel filtration, the fraction of PIP1 was obtained, which was shown to be a homogeneous polysaccharide by means of high-performance liquid chromatography. The structure of PIPt was determined by using several methods. C.,C analysis indicates that PIP1 is composed of the monosaccharides of glucose, galactose, and mannose. Their malar ratio is 3. 70: 4. 06: 1.00. The molar weight was estimated to be 17 kd via HPLC. IR, GC, partial hydrolysis with acid, pefiedate oxidation, Smith degradation, methylation, and GC-MS analysis were used for the structural analyses of PIP1. The results show that PIP1 has a small quantity of branch structure, The main glycosidic linkage of PIP1 has a β-configurafion. The main chain is made up of a large mass of glucose ( 1→3 ) and few mannose ( 1→4 ) ; the side chain is composed of glucose ( 1 →3 ) and galactose ( 1→6 ) ; the nonreduced end is composed of galactose and glucose. The side chains are branched at 6-0 of glucose( 1→3,6) and mannose(1→4,6). On an average, there are three branches among 20 residues. It is presumable that the existence of 1,3-linked Glc in the main and side chains is the main reason for its higher antitumor activity.展开更多
Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on...Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.展开更多
With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges o...With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.展开更多
The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies ...The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.展开更多
基金National Natural Science Foundation of China under Grant No.51078032the Visiting Scholar Foundation of China Scholarship Councilthe Center for Infrastructure Engineering Studies at Missouri University of Science and Technology
文摘An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coefficients can be determined with response spectral analysis. The optimization method degenerates into the conventional method used in current practices when only two modes of vibration are included in the objective function. Therefore, the proposed method with all significant modes included for simplicity in practical applications results in suboptimal damping coefficients. The effects of both spatial distribution and frequency content of excitations as well as structural dynamic characteristics on the evaluation of Rayleigh damping coefficients were investigated with a five-story building structure. Two application examples with a 62-story high-rise building and a 840 m long cable-stayed bridge under ten earthquake excitations demonstrated the accuracy and effectiveness of the proposed method to account for all of the above effects.
文摘In the tubular frames with simple joints, the joints may show considerable local flexibility, which causes excessive deformation and affects internal force distributions. It is useful and important to study turbular joint flexibility as well as the effect of joint local flexibility on the global behavior of tubular structure for the design and building of offshore platforms. A new method for computing the stiffness coefficients of simple tubular joints is developed in this paper based on two previous computing models. According to this method, the local flexibility of T, Y, TY tubular joints are computed. This method has merits of clear physical sense, simplicity of computations and less c.p.u. time. The effect of flexibility of tubular joints on the global behavior of framed tubular structures is investigated by comparing the computed results of tubular structures with flexible tubular joints with those with rigid connections. The comparison shows that the consideration of local flexibility of tubular joints and its effect on the stress analysis of offshore structures has its practical significance.
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
文摘In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underground structures is derived, and the generalized variational principle of nonconservative system is given, thus the fundamental of dynamical analysis for underground structures to resist blast is proposed. Finally, for the underground cylindrical structure to resist blast, dynamical calculations are made, and compared with the test results.
文摘The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment and design ground motion development:a. the development of regional seismo-tectonic model with seismic source areas within 500 km radius centered to the site;b. the development of strong motion prediction equations; c. logic three development for taking into account uncertainties and seismic hazard quantification;d. the development of uniform hazard response spectra for ground motion at the site;e. simulation of acceleration time histories compatible with uniform hazard response spectra. The following phase two in seismic design of NPP structures is the analysis of structural response for the design ground motion. This second phase of the process consists of the following steps:a. development of structural models of the plant buildings;b. development of the soil model underneath the plant buildings for soilstructure interaction response analysis;c. determination of instructure response spectra for the plant buildings for the equipment response analysis. In the third phase of the seismic design and analysis the equipment is analyzed on the basis of in-structure response spectra. For this purpose the structural models of the mechanical components and piping in the plant are set up. In large 3D-structural models used today the heaviest equipment of the primary coolant circuit is included in the structural model of the reactor building. In the fourth phase the electrical equipment and automation and control equipment are seismically qualified with the aid of the in-structure spectra developed in the phase two using large three-axial shaking tables. For this purpose the smoothed envelope spectra for calculated in-structure spectra are constructed and acceleration time is fitted to these smoothed envelope spectra.
文摘During the life of an offshore structure, its structural strength declines due to various kinds of damages related to the time factor. In this paper, four major kinds of damages, including damages caused by fatigue, dent, corrosion and marine life, are discussed. Based on these analyses, formulas for the evaluation of the damaged structure reliability are derived. Furthermore the computer program ISM for the analysis of structural reliability is developed by the use of Advanced First Order Second Moment method and Monte-Carlo Importance Sampling method. The reliability of a turbular joint and a beam are studied as numerical examples. The results show that the theory and the analysis method given in this paper are reasonable and effective.
文摘This paper presents a set of fundamental equations for reliability analysis of single-critical-point aircraft structures.The mathematical model is formulated by considering the following factors:the static strength of structure,initial crack,the initiation and propagation and unstability of fatigue crack,the residual strength of structure,the statistical distribution of load,the periods of overhaul,accident damage,the communication of damage among fleets etc.Based on this mathematical model,the influence of these factors on the reliability can be quantitatively analyzed,and various criteria for fatigue design of aircraft structures can be evaluated from the aspect of reliability.
文摘Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equations of motion is given for the viscoelastically damped structures.An iteration method for solving nonlinear eigenvalue problems is suggested to analyze the dynamic behavior of viscoelastically damped structures. The method has been applied to the complex model analysis of a sandwich cantilever beam with viscoelastic damping material core.
文摘Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.
文摘In architecture,interlace structural concept is considered as a new design approach for cosmopolitan cities with high density to minimize the land use and increase the interaction.With various architectural approach,land resources can be minimized by this interlace concept for residential complexes.Such buildings will eliminate the reduction of land resource problem and on the other side safety measures in structural design is incorporated by interlace concept of buildings.This new concept can be constructed steel or reinforced concrete.In this paper,an analytical approach has been presented for these buildings in architecture and structural design.In the research,design considerations were taken for interlaced structures with reinforced concrete and steel.Components of steel structure,isolated footing,and columns.This paper is presenting a step wise process for interlaced structures.They are identification of project area,layout and model preparation,analysis and design of concrete interlaced structure,analysis and design of steel interlaced structure,drafting of the plans and costing and estimation of the structures.Comparison of both reinforced concrete and steel structures were carried out.The main aim of the paper is to provide a comparison between steel and concrete interlaced structure.A cost estimation was carried out to determine optimum design and construction for interlaced structures.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘It is of great practical importance to analyze the shakedown of shell structures under cyclic loading, especially of those made of strain hardening materials.In this paper, same further understanding of the shakedown theorem for kinematic hardening materials has been made, and it is applied to analyze the shakedown of shell structures Though the residual stress of a real stale is related to plastic strain, the time-independent residual stress field as we will show in the theorem may be unrelated to the time-independent kinematically admissible plastic strain field For the engineering application, it will lie much more convenient to point this out clearly and definitely, otherwise it will be very difficult. Also, we have proposed a new method of proving this theorem.The above theorem is applied to the shakedown analysis of a cylindrical shell with hemispherical ends. According to the elastic solution, various possible residual sfcss and plastic strain Jlelds, the shakedown analysis of the structure can be reduced to a mathematical programming problem.The results of calculation show that the shakedown load oj strain hardening materials is about 30-40% higher than that of ideal plastic materials. So it is very important to consider the hardening of materials in the shakedown analysis,for it can greatly increase the structure design capacity, and meanwhile provide ascicntific basis to improve the design of shell structures.
文摘The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.
基金supported by National Natural Science Foundation of China(Grant No.:32301161)the Natural Scientific Foundation of Hunan Province,China(Grant No.:2023JJ60052)+3 种基金the Scientific Research Project of Hunan Provincial Health Commission,China(Grant No.:202112062218,20190161)the Scientific Research Project of Hunan Provincial Department of Education,China(Grant No.:22B0455)the Clinical“4310”Project of the University of South China,China(Grant No.:20224310NHYCG02)the Doctoral Scientific Research Foundation of University of South China,China(Grant No.:200XQD042).
文摘Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data).
基金National Natural Science Foundation of China(No.52375236)Fundamental Research Funds for the Central Universities,China(No.23D110316)。
文摘In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods.
基金Supported by Langfang Teachers College Research Grant(LSZB200803)~~
文摘[Objective] The study was to analyze the structure and function of HpaGXoo and the relationship between the two.[Method] Some related bioinformatics analysis software on internet such as NPSA,Swiss-Model,SAPS and InterPro Scan were adopted to analyze the structure and predict its function.[Result] HpaGXoo consists of 139 amino acids,and has many alpha-helical and coiled structure,no signal peptide on N-terminal and no transmembrane structure.It locates in bacterial cytoplasm.[Conclusion] The study will lay ...
基金Supported by the Science and Technique Bureau of Wenzhou City(No. S2005A003).
文摘Water-soluble crude polyseccharide(PIP) was extracted from cultured mycelium of the fungus Phellinus igniarius. After ethanol precipitation and sepharose CL-6B gel filtration, the fraction of PIP1 was obtained, which was shown to be a homogeneous polysaccharide by means of high-performance liquid chromatography. The structure of PIPt was determined by using several methods. C.,C analysis indicates that PIP1 is composed of the monosaccharides of glucose, galactose, and mannose. Their malar ratio is 3. 70: 4. 06: 1.00. The molar weight was estimated to be 17 kd via HPLC. IR, GC, partial hydrolysis with acid, pefiedate oxidation, Smith degradation, methylation, and GC-MS analysis were used for the structural analyses of PIP1. The results show that PIP1 has a small quantity of branch structure, The main glycosidic linkage of PIP1 has a β-configurafion. The main chain is made up of a large mass of glucose ( 1→3 ) and few mannose ( 1→4 ) ; the side chain is composed of glucose ( 1 →3 ) and galactose ( 1→6 ) ; the nonreduced end is composed of galactose and glucose. The side chains are branched at 6-0 of glucose( 1→3,6) and mannose(1→4,6). On an average, there are three branches among 20 residues. It is presumable that the existence of 1,3-linked Glc in the main and side chains is the main reason for its higher antitumor activity.
基金supported by National Natural Science Foundation of China(Grant No.10772060)Heilongjiang Provincial Natural Science Foundation with Excellent Young Investigators of China(GrantNo.JC2006-13)
文摘Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.
基金the National Natural Science Foundation of China(21975154)the Shanghai Municipal Education Commission(Innovation Program(2019-01-07-00-09E00021)+2 种基金Innovative Research Team of High-level Local Universities in Shanghaisupported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power。
文摘With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.
基金financially supported by the China Geological Survey(Grant Nos.DD20230229,DD20160083,DD20190011,DD20221643-5)the National Key Research and Development Program of China(the DREAM—Deep Resource Exploration and Advanced Mining+1 种基金Grant No.2018YFC0603701)the Cooperative Project between the Chinese Academy of Geological Sciences and the Sinopec Shengli Oilfield Company(Grant No.P22065)。
文摘The North Qilian Shan fold and thrust belt,located at the northern Tibetan Plateau and southern margin of the Hexi Corridor,is a key tectonic unit to decode the formation and expansion of the plateau.Previous studies emphasize the Cenozoic deformation due to the far-field response to the Indo-Asian collision,but the Mesozoic deformations are poorly constrained in this area.We conducted detailed field mapping,structural analysis,geochronology,and structural interpretation of deep seismic reflectional profiling and magnetotelluric(MT)sounding,to address the superposed results of the Mesozoic and Cenozoic deformation.The results recognized the North Qilian thrust and nappe system(NQTS),the root and the frontal belt are the North Qilian thrust(NQT),and the Yumu Shan klippe(YK),respectively.The middle belt is located between the NQT and the YK.Monzonitic granite zircon U-Pb dating from the middle belt yields an age of ca.415 Ma,which is similar to south NQT.The thrusting displacement is estimated at ca.48 km by structural interpretation of deep profiles.The timing is constrained in the early stage of the Early Cretaceous by the formation of simultaneous growth strata.We suggest that the NQTS has resulted from the far-field effect of the Lhasa-Qiangtang collision,and the Yumu Shan is uplifted by the superposed Cenozoic deformation.