Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environmen...Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently.DRL has been used in many application fields,including games,robots,networks,etc.for creating autonomous systems that improve themselves with experience.It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially.Therefore,a novel query routing approach called Deep Reinforcement Learning based Route Selection(DRLRS)is proposed for unstructured P2P networks based on a Deep Q-Learning algorithm.The main objective of this approach is to achieve better retrieval effectiveness with reduced searching cost by less number of connected peers,exchangedmessages,and reduced time.The simulation results shows a significantly improve searching a resource with compression to k-Random Walker and Directed BFS.Here,retrieval effectiveness,search cost in terms of connected peers,and average overhead are 1.28,106,149,respectively.展开更多
This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, wh...This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, which enables agents to dynamically and automatically select, according to current traffic condition of the network, the global optimal traversal path. An adjusting mechanism is given to adjust the routing table when peers join or leave. By means of exchanging pheromone intensity of part of paths, the algorithm provides agents with more choices as to which one to move and avoids prematurely reaching local optimal path. And parameters of the algorithm are determined by lots of simulation testing. And we also compare with other routing algorithms in unstructured P2P network in the end.展开更多
In order to reduce the maintenance cost of structured Peer-to-Peer (P2P),Clone Node Protocol (CNP) based on user behavior is proposed.CNP considers the regularity of user behavior and uses the method of clone node.A B...In order to reduce the maintenance cost of structured Peer-to-Peer (P2P),Clone Node Protocol (CNP) based on user behavior is proposed.CNP considers the regularity of user behavior and uses the method of clone node.A Bidirectional Clone Node Chord model (BCNChord) based on CNP protocol is designed and realized.In BCNChord,Anticlockwise Searching Algorithm,Difference Push Synchronize Algorithm and Optimal Maintenance Algorithm are put forward to increase the performances.In experiments,according to the frequency of nodes,the maintenance cost of BCNChord can be 3.5%~32.5% lower than that of Chord.In the network of 212 nodes,the logic path hop is steady at 6,which is much more prior to 12 of Chord and 10 of CNChord.Theoretical analysis and experimental results show that BCNChord can effectively reduce the maintenance cost of its structure and simultaneously improve the query efficiency up to (1/4)O(logN).BCNChord is more suitable for highly dynamic environment and higher real-time system.展开更多
Decentralized and unstructured peer-to-peer applications such as Gnutella are attractive because they require no centralized directories and no precise control over network topology or data placement. Search algorithm...Decentralized and unstructured peer-to-peer applications such as Gnutella are attractive because they require no centralized directories and no precise control over network topology or data placement. Search algorithm is the major component of the distributed system and its efficiency also does influence the systems performance. However the flooding-based query algorithm used in Gnutella produces huge traffic and does not scale well. Gnutella-like P2P topology has power-law characteristic, so a search algorithm was proposed based on high degree nodes of power-law network, High Degree Nodes-Based Search (HDNBS). Extensive simulation results show that this algorithm performs on power-law networks very well, achieves almost 100% success rates, produces O(logN) messages per query and can locate target file within O(lagN) hops.展开更多
Media streaming delivery in wireless ad hoc networks is challenging due to the stringent resource restrictions,po-tential high loss rate and the decentralized architecture. To support long and high-quality streams,one...Media streaming delivery in wireless ad hoc networks is challenging due to the stringent resource restrictions,po-tential high loss rate and the decentralized architecture. To support long and high-quality streams,one viable approach is that a media stream is partitioned into segments,and then the segments are replicated in a network and served in a peer-to-peer(P2P) fashion. However,the searching strategy for segments is one key problem with the approach. This paper proposes a hybrid ants-like search algorithm(HASA) for P2P media streaming distribution in ad hoc networks. It takes the advantages of random walks and ants-like algorithms for searching in unstructured P2P networks,such as low transmitting latency,less jitter times,and low unnecessary traffic. We quantify the performance of our scheme in terms of response time,jitter times,and network messages for media streaming distribution. Simulation results showed that it can effectively improve the search efficiency for P2P media streaming distribution in ad hoc networks.展开更多
The trustworthiness and security of routing in the existing Peer-to-Peer (P2P) networks can not be ensured because of the diversity of the strategies of P2P nodes. This paper firstly uses game theory to establish game...The trustworthiness and security of routing in the existing Peer-to-Peer (P2P) networks can not be ensured because of the diversity of the strategies of P2P nodes. This paper firstly uses game theory to establish game model of the strategies and profits of various types of routing nodes. Then,two incentive mechanisms for the corresponding stages of P2P trustworthy routing are proposed,namely trust associated mechanism and trust compensated mechanism. Simulation results show that the incentive mechanisms proposed in this paper will encourage cooperation actions of good nodes and restrain malicious actions of bad nodes,which ensure the trustworthiness of routing consequently.展开更多
We present an effective routing solution for the backbone of hierarchical MANETs. </span></span><span><span><span style="font-family:""><span style="font-family:Ver...We present an effective routing solution for the backbone of hierarchical MANETs. </span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Our solution leverages the storage and retrieval mechanisms of a Distributed Hash Table (DHT) common to many (structured) P2P overlays. Th</span><span style="font-family:Verdana;">e DHT provides routing information in a decentralized fash</span><span style="font-family:Verdana;">ion, while supporting different forms of node and network mobility. We split a flat network into clusters, each having a gateway who participates in a DHT overlay. These g</span><span style="font-family:Verdana;">ateways interconnect the clusters in a backbone network. Two routing </span><span style="font-family:Verdana;">approaches for the backbone are explore</span><span style="font-family:Verdana;">d: floodi</span><span style="font-family:Verdana;">ng and a new solution exploit</span><span style="font-family:Verdana;">ing the storage and retrieval capabilities of a P2P overlay based on a DHT.</span><span style="font-family:Verdana;"> We </span><span style="font-family:Verdana;">implement both approaches in a net</span><span style="font-family:Verdana;">work simulator and thoroughly evaluate th</span><span style="font-family:Verdana;">e performance of the proposed scheme using a range of stati</span><span style="font-family:Verdana;">c and mobile scenarios. We also compare our solution against flooding. The simulation results show that our solution, even in the presence of mobility, achieved well abo</span><span style="font-family:Verdana;">ve 90% success rates and maintained very low and constant round tr</span><span style="font-family:Verdana;">ip times, unlike the flooding approach. In fact, the performance of the proposed </span><span style="font-family:Verdana;">inter-cluster routing solution, in many cases, is comparable to the perfo</span><span style="font-family:Verdana;">rma</span><span style="font-family:Verdana;">nce of the intra-cluster routing case. The advantage of our proposed ap</span><span style="font-family:Verdana;">proach compared to flooding increases as the number of clusters increases, demonstrating the superior scalability of our proposed approach.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods base...P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions.展开更多
Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the powe...Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the power dispatch of ADNs and P2P energy trading while preserving the privacy of different physical interests.Hence,this paper proposes a soft actor-critic algorithm incorporating distributed trading control(SAC-DTC)to tackle the optimal power dispatch of ADNs and the P2P energy trading considering privacy preservation among prosumers.First,the soft actor-critic(SAC)algorithm is used to optimize the control strategy of device in ADNs to minimize the operation cost,and the primary environmental information of the ADN at this point is published to prosumers.Then,a distributed generalized fast dual ascent method is used to iterate the trading process of prosumers and maximize their revenues.Subsequently,the results of trading are encrypted based on the differential privacy technique and returned to the ADN.Finally,the social welfare value consisting of ADN operation cost and P2P market revenue is utilized as a reward value to update network parameters and control strategies of the deep reinforcement learning.Simulation results show that the proposed SAC-DTC algorithm reduces the ADN operation cost,boosts the P2P market revenue,maximizes the social welfare,and exhibits high computational accuracy,demonstrating its practical application to the operation of power systems and power markets.展开更多
Birefringent crystals play an irreplaceable role in optical systems by adjusting the polarization state of light in optical devices.This work successfully synthesized a new thiophosphate phase ofβ-Pb_(3)P_(2)S_(8)thr...Birefringent crystals play an irreplaceable role in optical systems by adjusting the polarization state of light in optical devices.This work successfully synthesized a new thiophosphate phase ofβ-Pb_(3)P_(2)S_(8)through the high-temperature solid-state spontaneous crystallization method.Different from the cubicα-Pb_(3)P_(2)S_(8),theβ-Pb_(3)P_(2)S_(8)crystallizes in the orthorhombic Pbcn space group.Notably,β-Pb_(3)P_(2)S_(8)shows a large band gap of 2.37 e V in lead-based chalcogenides,wide infrared transparent window(2.5-15μm),and excellent thermal stability.Importantly,the experimental birefringence shows the largest value of0.26@550 nm in chalcogenides,even larger than the commercialized oxide materials.The Barder charge analysis result indicates that the exceptional birefringence effect is mainly from the Pb^(2+)and S^(2-)in the[Pb S_n]polyhedrons.Meanwhile,the parallelly arranged polyhedral layers could improve the structural anisotropic.Therefore,this work supports a new method for designing chalcogenides with exceptional birefringence effect in the infrared region.展开更多
Sodium-ion batteries have been deemed as a sustainable alternative to lithium-ion systems due to the abundance and affordability of sodium sources.Nevertheless,developing high-energy-density P2-type layered oxide cath...Sodium-ion batteries have been deemed as a sustainable alternative to lithium-ion systems due to the abundance and affordability of sodium sources.Nevertheless,developing high-energy-density P2-type layered oxide cathodes with long-term cycling stability poses challenges,stemming from irreversible phase transitions,structural degradation,and lattice oxygen instability during electrochemical cycling.Here,we propose a one-step NbB_(2)modification strategy that enhances both bulk and surface properties of Na_(0.8)Li_(0.12)Ni_(0.22)Mn_(0.66)O_(2)cathodes.By exploiting different techniques,we disclose that bulk Nb and B doping combined with a Nb-Transition Metal-BO_(3)surface layer reconstruction enable a reversible P2-OP4 phase transition and,meanwhile,improve anionic redox reversibility.In addition,Li^(+)migrates into alkali-metal layers and underpins the layered structure through the“pillar effect”,thereby facilitating the Na^(+)diffusion in Na_(0.8)Li_(0.12)Ni_(0.22)Mn_(0.66)O_(2)cathodes and retaining their structural integrity at high voltage.As a result,the modified cathodes achieve 93.6%capacity retention after 500 cycles at 1C and deliver specific capacities above 114 m A h g^(-1)at 10C within 2.0-4.3 V.Contrary to the previous studies reporting that OP4 phase are detrimental to the structural stability of layered cathodes,we experimentally validate that a well-regulated P2-OP4 phase transition is beneficial for structural and electrochemical stabilities.展开更多
The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanis...The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.展开更多
基金Authors would like to thank the Deanship of Scientific Research at Shaqra University for supporting this work under Project No.g01/n04.
文摘Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently.DRL has been used in many application fields,including games,robots,networks,etc.for creating autonomous systems that improve themselves with experience.It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially.Therefore,a novel query routing approach called Deep Reinforcement Learning based Route Selection(DRLRS)is proposed for unstructured P2P networks based on a Deep Q-Learning algorithm.The main objective of this approach is to achieve better retrieval effectiveness with reduced searching cost by less number of connected peers,exchangedmessages,and reduced time.The simulation results shows a significantly improve searching a resource with compression to k-Random Walker and Directed BFS.Here,retrieval effectiveness,search cost in terms of connected peers,and average overhead are 1.28,106,149,respectively.
基金Supported by the National Natural Science Foun-dation of China (60403027) Natural Science Foundation of HubeiProvince (2005ABA258) the Opening Foundation of State KeyLaboratory of Software Engineering (SKLSE05-07)
文摘This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, which enables agents to dynamically and automatically select, according to current traffic condition of the network, the global optimal traversal path. An adjusting mechanism is given to adjust the routing table when peers join or leave. By means of exchanging pheromone intensity of part of paths, the algorithm provides agents with more choices as to which one to move and avoids prematurely reaching local optimal path. And parameters of the algorithm are determined by lots of simulation testing. And we also compare with other routing algorithms in unstructured P2P network in the end.
基金supported by the National Natural Science Foundation of China under Grant No.61100205Science and Technology Project of Beijing Municipal Education Commission under Grant No.KM201110016006Doctor Start-up Foundation of BUCEA under Grant No.101002508
文摘In order to reduce the maintenance cost of structured Peer-to-Peer (P2P),Clone Node Protocol (CNP) based on user behavior is proposed.CNP considers the regularity of user behavior and uses the method of clone node.A Bidirectional Clone Node Chord model (BCNChord) based on CNP protocol is designed and realized.In BCNChord,Anticlockwise Searching Algorithm,Difference Push Synchronize Algorithm and Optimal Maintenance Algorithm are put forward to increase the performances.In experiments,according to the frequency of nodes,the maintenance cost of BCNChord can be 3.5%~32.5% lower than that of Chord.In the network of 212 nodes,the logic path hop is steady at 6,which is much more prior to 12 of Chord and 10 of CNChord.Theoretical analysis and experimental results show that BCNChord can effectively reduce the maintenance cost of its structure and simultaneously improve the query efficiency up to (1/4)O(logN).BCNChord is more suitable for highly dynamic environment and higher real-time system.
文摘Decentralized and unstructured peer-to-peer applications such as Gnutella are attractive because they require no centralized directories and no precise control over network topology or data placement. Search algorithm is the major component of the distributed system and its efficiency also does influence the systems performance. However the flooding-based query algorithm used in Gnutella produces huge traffic and does not scale well. Gnutella-like P2P topology has power-law characteristic, so a search algorithm was proposed based on high degree nodes of power-law network, High Degree Nodes-Based Search (HDNBS). Extensive simulation results show that this algorithm performs on power-law networks very well, achieves almost 100% success rates, produces O(logN) messages per query and can locate target file within O(lagN) hops.
基金Project supported by the National Natural Science Foundation of China (No. 60302004)the Natural Science Foundation of HubeiProvince, China (No. 2005ABA264)
文摘Media streaming delivery in wireless ad hoc networks is challenging due to the stringent resource restrictions,po-tential high loss rate and the decentralized architecture. To support long and high-quality streams,one viable approach is that a media stream is partitioned into segments,and then the segments are replicated in a network and served in a peer-to-peer(P2P) fashion. However,the searching strategy for segments is one key problem with the approach. This paper proposes a hybrid ants-like search algorithm(HASA) for P2P media streaming distribution in ad hoc networks. It takes the advantages of random walks and ants-like algorithms for searching in unstructured P2P networks,such as low transmitting latency,less jitter times,and low unnecessary traffic. We quantify the performance of our scheme in terms of response time,jitter times,and network messages for media streaming distribution. Simulation results showed that it can effectively improve the search efficiency for P2P media streaming distribution in ad hoc networks.
基金Supported by the Hi-Tech R&D Program (863) of China (2006AA01Z232)the Research Innovation Program for Graduate Student in Jiangsu Province (CX07B-11OZ)
文摘The trustworthiness and security of routing in the existing Peer-to-Peer (P2P) networks can not be ensured because of the diversity of the strategies of P2P nodes. This paper firstly uses game theory to establish game model of the strategies and profits of various types of routing nodes. Then,two incentive mechanisms for the corresponding stages of P2P trustworthy routing are proposed,namely trust associated mechanism and trust compensated mechanism. Simulation results show that the incentive mechanisms proposed in this paper will encourage cooperation actions of good nodes and restrain malicious actions of bad nodes,which ensure the trustworthiness of routing consequently.
文摘We present an effective routing solution for the backbone of hierarchical MANETs. </span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">Our solution leverages the storage and retrieval mechanisms of a Distributed Hash Table (DHT) common to many (structured) P2P overlays. Th</span><span style="font-family:Verdana;">e DHT provides routing information in a decentralized fash</span><span style="font-family:Verdana;">ion, while supporting different forms of node and network mobility. We split a flat network into clusters, each having a gateway who participates in a DHT overlay. These g</span><span style="font-family:Verdana;">ateways interconnect the clusters in a backbone network. Two routing </span><span style="font-family:Verdana;">approaches for the backbone are explore</span><span style="font-family:Verdana;">d: floodi</span><span style="font-family:Verdana;">ng and a new solution exploit</span><span style="font-family:Verdana;">ing the storage and retrieval capabilities of a P2P overlay based on a DHT.</span><span style="font-family:Verdana;"> We </span><span style="font-family:Verdana;">implement both approaches in a net</span><span style="font-family:Verdana;">work simulator and thoroughly evaluate th</span><span style="font-family:Verdana;">e performance of the proposed scheme using a range of stati</span><span style="font-family:Verdana;">c and mobile scenarios. We also compare our solution against flooding. The simulation results show that our solution, even in the presence of mobility, achieved well abo</span><span style="font-family:Verdana;">ve 90% success rates and maintained very low and constant round tr</span><span style="font-family:Verdana;">ip times, unlike the flooding approach. In fact, the performance of the proposed </span><span style="font-family:Verdana;">inter-cluster routing solution, in many cases, is comparable to the perfo</span><span style="font-family:Verdana;">rma</span><span style="font-family:Verdana;">nce of the intra-cluster routing case. The advantage of our proposed ap</span><span style="font-family:Verdana;">proach compared to flooding increases as the number of clusters increases, demonstrating the superior scalability of our proposed approach.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
文摘P2P trading is driving the decentralization of the electricity market,the autonomy and privacy requirements of prosumers may intro-duce safety risks such as voltage violations.Existing security management methods based on price guidance may face unsolvable situa-tions in trading scenarios and have difficulty assessing the impact of P2P transactions on voltage security.To this end,this paper proposes a novel distribution system operator(DSO)-prosumers bi-level optimization framework incorporating the dynamic operating envelope(DOE)and risk coefficient-based network usage charge(RC-NUC).In the upper-level,the DOE is employed for dynamic voltage man-agement to prevent violations while the RC-NUC further guides prosumers to engage in grid-friendly transactions.The lower-level decen-tralized market enables prosumers to optimize trading decisions autonomously.Only price signals and energy quantities are exchanged between the two levels,ensuring the privacy of both parties.Additionally,an alternating direction method of multipliers(ADMM)with adaptive penalty factor is introduced to improve computational efficiency.Case studies on a modified IEEE 33-bus system demonstrate that the proposed method reduces voltage violation risks by 18.31%and enhances trading efficiency by 32.3%.These results highlight the feasibility and effectiveness of the approach in advancing secure and efficient distributed energy transactions.
基金supported by the National Natural Science Foundation of China(No.52177085).
文摘Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the power dispatch of ADNs and P2P energy trading while preserving the privacy of different physical interests.Hence,this paper proposes a soft actor-critic algorithm incorporating distributed trading control(SAC-DTC)to tackle the optimal power dispatch of ADNs and the P2P energy trading considering privacy preservation among prosumers.First,the soft actor-critic(SAC)algorithm is used to optimize the control strategy of device in ADNs to minimize the operation cost,and the primary environmental information of the ADN at this point is published to prosumers.Then,a distributed generalized fast dual ascent method is used to iterate the trading process of prosumers and maximize their revenues.Subsequently,the results of trading are encrypted based on the differential privacy technique and returned to the ADN.Finally,the social welfare value consisting of ADN operation cost and P2P market revenue is utilized as a reward value to update network parameters and control strategies of the deep reinforcement learning.Simulation results show that the proposed SAC-DTC algorithm reduces the ADN operation cost,boosts the P2P market revenue,maximizes the social welfare,and exhibits high computational accuracy,demonstrating its practical application to the operation of power systems and power markets.
基金supported in part by the National Natural Science Foundation of China(No.52102218)the National Key Research and Development Program of China(No.2020YFA0710303)+2 种基金the Fujian Science&Technology Innovation Laboratory for Op-toelectronic Information of China(No.2021ZZ127)the Minjiang Scholar Professorship(No.GXRC-21004)the Natural Science Foundation of Fujian Province of China(No.2021J01594)。
文摘Birefringent crystals play an irreplaceable role in optical systems by adjusting the polarization state of light in optical devices.This work successfully synthesized a new thiophosphate phase ofβ-Pb_(3)P_(2)S_(8)through the high-temperature solid-state spontaneous crystallization method.Different from the cubicα-Pb_(3)P_(2)S_(8),theβ-Pb_(3)P_(2)S_(8)crystallizes in the orthorhombic Pbcn space group.Notably,β-Pb_(3)P_(2)S_(8)shows a large band gap of 2.37 e V in lead-based chalcogenides,wide infrared transparent window(2.5-15μm),and excellent thermal stability.Importantly,the experimental birefringence shows the largest value of0.26@550 nm in chalcogenides,even larger than the commercialized oxide materials.The Barder charge analysis result indicates that the exceptional birefringence effect is mainly from the Pb^(2+)and S^(2-)in the[Pb S_n]polyhedrons.Meanwhile,the parallelly arranged polyhedral layers could improve the structural anisotropic.Therefore,this work supports a new method for designing chalcogenides with exceptional birefringence effect in the infrared region.
基金financially supported by the National Key R&D Program of China(2020YFA0406203)National Natural Science Foundation of China(92472115,52371225 and 52072008)+5 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515120070,2022A1515110816 and 2022A1515110596)the Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong(KFKT2022A04)Jialin Xie Fund(E4546IU2)the open research fund of Songshan Lake Materials Laboratory(2023SLABFN02)The Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by the Municipal Development and Reform Commission of Shenzhen also contributed to this researchthe allocation of beamtime at BL15U and BL02B02 beamlines at SSRF。
文摘Sodium-ion batteries have been deemed as a sustainable alternative to lithium-ion systems due to the abundance and affordability of sodium sources.Nevertheless,developing high-energy-density P2-type layered oxide cathodes with long-term cycling stability poses challenges,stemming from irreversible phase transitions,structural degradation,and lattice oxygen instability during electrochemical cycling.Here,we propose a one-step NbB_(2)modification strategy that enhances both bulk and surface properties of Na_(0.8)Li_(0.12)Ni_(0.22)Mn_(0.66)O_(2)cathodes.By exploiting different techniques,we disclose that bulk Nb and B doping combined with a Nb-Transition Metal-BO_(3)surface layer reconstruction enable a reversible P2-OP4 phase transition and,meanwhile,improve anionic redox reversibility.In addition,Li^(+)migrates into alkali-metal layers and underpins the layered structure through the“pillar effect”,thereby facilitating the Na^(+)diffusion in Na_(0.8)Li_(0.12)Ni_(0.22)Mn_(0.66)O_(2)cathodes and retaining their structural integrity at high voltage.As a result,the modified cathodes achieve 93.6%capacity retention after 500 cycles at 1C and deliver specific capacities above 114 m A h g^(-1)at 10C within 2.0-4.3 V.Contrary to the previous studies reporting that OP4 phase are detrimental to the structural stability of layered cathodes,we experimentally validate that a well-regulated P2-OP4 phase transition is beneficial for structural and electrochemical stabilities.
基金funded by State Grid Beijing Electric Power Company Technology Project,grant number 520210230004.
文摘The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.