The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil...Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.展开更多
Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-form...Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.展开更多
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from...Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.展开更多
This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The partici...This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.展开更多
This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear i...This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear industry.Sino-British scientific interactions took place across multiple dimensions,involving various institutions and individuals.Around 1949,UK-trained Chinese nuclear scientists returned to China,bringing advanced technological knowledge and extensive practical experience.The PRC regarded the UK as a crucial gateway to overcoming the technological blockade imposed by the United States(and later the Soviet Union)and sought to establish scientific relations with the UK through semi-official and unofficial channels.Specifically,these connections manifested in the interactions between the Chinese Academy of Sciences(CAS)and the Royal Society of London,the guiding role of the Chinese Charge d'Affaires Office in London in facilitating scientific and technological exchanges,and the technology investigations led by the Ministry of Foreign Trade in the name of trade.Additionally,the Sino-British scientific network extended to the international arena,allowing China to engage in nuclear-related global organizations and events.This study highlights the significant British influence on the early development of China's nuclear industry,revealing the extent of its British influence.It argues that China's urgent need for nuclear science and industrial advancement was a key driver of its scientific engagement withthe UK.展开更多
The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. Fo...The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. For example, the nervous system can sense changes in the external environment and convey these changes through molecules and mediators with receptors in the immune system to modulate immune responses. Neuromediators can act on different receptors in the same group of cells, producing antipodal effects. Identification of the anti-inflammatory role of glucocorticoids highlighted that the body functions properly in an integrated manner. These interactions and crosstalk are not unidirectional, as the immune system can also influence various aspects of the nervous system, such as synaptic plasticity and fever. Strict integration of neuro-immuno-endocrine circuits is indispensable for homeostasis. Understanding these circuits and molecules can lead to advances in the understanding of various immune diseases, which will offer promising therapeutic options.展开更多
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d...By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability.展开更多
Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autoph...Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype.展开更多
Nuclear magnetic resonance(NMR)serves as a powerful tool for studying both the structure and dynamics of proteins.The NOE method,alongside residual dipolar;coupling,paramagnetic effects,J-coupling,and other related te...Nuclear magnetic resonance(NMR)serves as a powerful tool for studying both the structure and dynamics of proteins.The NOE method,alongside residual dipolar;coupling,paramagnetic effects,J-coupling,and other related techniques,has reached a level of maturity that allows for the determination of protein structures.Furthermore,NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales.The properties of protein systems are dictated by intra-and intermo-lecular interactions among atoms,which involve covalent bonds,hydrogen bonds(H-bonds),electrostatic interactions,and van der Waals forces.Multiple NMR approaches have been developed to measure noncovalent interactions,and this paper offers a concise overview of noncovalent interaction measurements using NMR,with a specific emphasis on the advancements accomplished in our laboratory.展开更多
Chemical communication in plant–microbiome and intra-microbiome interactions weaves a complex network,critically shaping ecosystem stability and agricultural productivity.This non-contact interaction is driven by sma...Chemical communication in plant–microbiome and intra-microbiome interactions weaves a complex network,critically shaping ecosystem stability and agricultural productivity.This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association.Plants leverage these signals to distinguish between pathogens and beneficial microbes,dynamically modulate immune responses,and secrete exudates to recruit a beneficial microbiome,while microbes in turn influence plant nutrient acquisition and stress resilience.Such bidirectional chemical dialogues underpin nutrient cycling,co-evolution,microbiome assembly,and plant resistance.However,knowledge gaps persist regarding validating the key molecules involved in plant–microbe interactions.Interpreting chemical communication requires multi-omics integration to predict key information,genome editing and click chemistry to verify the function of biomolecules,and artificial intelligence(AI)models to improve resolution and accuracy.This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.展开更多
Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction len...Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.展开更多
Soil denitrification,anammox,and Feammox are key for nitrogen(N)removal in agriculture.Despite potassium(K)fertilizer enhancing N efficiency,their role in regulation of these processes is unclear.A soil column incubat...Soil denitrification,anammox,and Feammox are key for nitrogen(N)removal in agriculture.Despite potassium(K)fertilizer enhancing N efficiency,their role in regulation of these processes is unclear.A soil column incubation with 15N isotope tracingwas conducted to explore millimeter-scale interactions of N and K on these pathways in soil fertilization zones.After 28 days,individual applications of N and K reduced denitrification-nitrogen removal rate(DNRR),anammox-nitrogen removal rate(ANRR),and feammox-nitrogen removal rate(FNRR)compared to a non-fertilizer control.N fertilizer had a greater effect than K,likely due to the high consumption of dissolved organic carbon by N fertilizer or the increased soil organic matter decomposition by K fertilizer.Combing of N and K increased DNRR,ANRR and FNRR rates by 31%,3090%and 244%compared to single N,and by-53.7%,885%and 222%compared to single K.These effects diminished with depth and distance from fertilizer sites.The effects of N fertilizer on these N removal processes might be regulate abundance of key microbes(e.g.,Limnobacter and Clostridium)and key gene(nirK,hzsB,ACM and Geo)by providing N substrates,while K enhances N metabolism efficiency through enzyme activation,indicated by the downregulation of certain genes(hzsB,ACM and Geo)and a negative correlation with N removal by simultaneously increasing gene expression and enzyme activity.These findings provide insights into how N and K together enhance N removal,emphasizing their importance for optimizing this process.展开更多
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni...With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.展开更多
The simultaneous description for nuclear matter and finite nuclei has been a long-standing challenge in nuclear ab initio theory.With the success for nuclear matter,the relativistic Brueckner-Hartree-Fock(RBHF)theory ...The simultaneous description for nuclear matter and finite nuclei has been a long-standing challenge in nuclear ab initio theory.With the success for nuclear matter,the relativistic Brueckner-Hartree-Fock(RBHF)theory with covariant chiral interactions is a promising ab initio approach to describe both nuclear matter and finite nuclei.In the description of finite nuclei with the current RBHF theory,the covariant chiral interactions have to be localized to make calculations feasible.In order to examine the reliability and validity,in this letter,the RBHF theory with local and nonlocal covariant chiral interactions at leading order is applied to nuclear matter.The low-energy constants in the covariant chiral interactions determined with the local regularization are close to those with the nonlocal regularization.Moreover,the RBHF theory using covariant chiral interactions with local and nonlocal regulators provides an equally good description of the saturation properties of nuclear matter.The present work paves the way for the implementation of covariant chiral interactions in RBHF theory for finite nuclei.展开更多
In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOO...In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOOH plays an important role on the size and electronic structure of Cu nanoparticles,where Cu has the ultrafine size of 2.2 nm and positive shift of its valence states,which in turn causes the increased number of Cu active sites and enhanced intrinsic activity of every active site.As a result,this catalyst realizes an excellent catalytic performance on eNO_(3)RR with the maximal NH_(3)Faraday efficiency(FE)(96.8%)and the highest yield rate(55.51 mg h^(-1)cm^(-2))at a large NH_(3)partial current density of700 m A/cm^(2),which could help to promote the industrialization of NH_(3)production under ambient conditions.展开更多
Three monomers,namely A2,B2,and GH,were designed and synthesized.By utilizing double host-vip interactions,the monomers A2+B2+GH underwent self-assembly to form a supramolecular linear polymer(SLP)at high concentrat...Three monomers,namely A2,B2,and GH,were designed and synthesized.By utilizing double host-vip interactions,the monomers A2+B2+GH underwent self-assembly to form a supramolecular linear polymer(SLP)at high concentrations.Long fibers could be pulled from the concentrated SLP solution.Upon the addition of PdCl_(2)(PhCN)_(2)into the SLP solution,a structural transformation occurred from SLP to a supramolecular crosslinked polymer(SCP)through metal coordination interaction.This transformation induced fluorescence quenching,test paper strips for ion detection experiment confirmed that the SLP had good detection ability for Pd^(2+).Furthermore,the SCP underwent a transformation into a gel when the concentration exceeded 145 mmol/L.The SCP gel demonstrated sensitivity to different stimuli,such as K^(+)ions and changes in temperature,accompanied by a reversible transition between sol and gel states.Additionally,rheological analyses indicated that the gel possessed favorable self-healing properties.展开更多
To broaden the frequency regulation range of piezoelectric motors,this paper proposes a piezoelectric vibrator that operates in multiple in-plane vibration modes with distinct resonance frequencies.The piezoelectric v...To broaden the frequency regulation range of piezoelectric motors,this paper proposes a piezoelectric vibrator that operates in multiple in-plane vibration modes with distinct resonance frequencies.The piezoelectric vibrator was constructed by reasonably arranging multiple groups of piezoelectric ceramic(PZT)sheets based on the most typical rectangular plate piezoelectric motors.Suitable working modes were selected,and the excitation method of these operating modes was also analyzed.Besides,interactions between selected operating modes were also investigated.The finite element software,ANSYS,was adopted to optimize the structural parameters of the vibrator through modal analysis to match the resonance frequencies of specific modes.After that,whether the selected operating modes can be successfully motivated was verified by harmonic response analysis.Finally,the vibration characteristics of piezoelectric vibrators under conventional vibration modes and multiple modes were acquired by transient analysis,respectively.Simulation results reveal that under dual-frequency excitation scheme 1,response displacements of the driving point are relatively larger.This strategy not only facilitates the excitation of B4 mode but also enables control over the ratio of horizontal to vertical displacements of the driving point.Additionally,incorporating B4 mode expands the frequency adjustment range of piezoelectric vibrators.展开更多
The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate...The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate the flow field of a semi-submersible against extreme waves,a model simulating solitary wave interactions with the semi-submersible system was developed via the meshless smoothed particle hydrodynamics(SPH)method and Rayleigh’s theory.Notably,the wave surface and wave load results obtained from the SPH model,compared with those of OpenFOAM,result in an interaction test case between solitary waves and partially submerged rectangular obstacles and show good agreement,with a maximum relative error of 3.4%.An analysis of the calculated results of the semi-submersible facing solitary waves revealed several key findings:overtopping,which decreases with increasing water depth,occurs on the structure when the non-submerged ratio is 0.33 and the wave height surpasses 0.2 m.The transmission coefficient decreases with increasing wave height but increases as the water depth increases.Furthermore,the reflection coefficient peaks at a wave height H0=0.2 m.The dissipation coefficient displays a valley trend with a small water depth,whereas it increases monotonically with increasing water depth.The dissipation coefficient decreases with increasing water depth.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
文摘Deficiency or restriction of Zn absorption in soils is one of the most common micronutrients deficient in cereal plants. To investigate critical micronutrient interaction in zinc deficiency and zinc sufficient in soil, a factorial experiment based on completely randomized design (CRD) with three replications was conducted in 2023. Six wheat cultivars with different Zn efficiency were used. The cultivars were grown under Zn deficiency and adequate conditions. Results showed that in Zn deficiency conditions, with increasing Zn concentration in the roots, Fe concentrations were increased too, while the Cu and Mn concentrations decreased. In the same condition and with increasing Zn concentration in shoots, the concentrations of Fe and Mn decreased, while Cu were increased. However, by increasing Zn concentration, Fe, Cu, and Mn concentrations were increased in Zn deficiency condition in grains, as well as Zn sufficient conditions. RST (root to shoot micronutrient translocation) comparison of cultivars showed that in lack of Zn, the ability of translocation of Zn, Fe, and Mn in Zn-inefficient cultivar from root to shoot was higher than inefficient cultivar. In the same conditions, the capability of Zn-inefficient cultivar in Cu translocation from root to shoot was lower than other cultivars. In general, it seems that in Zn deficiency conditions, there are antagonistic effects among Zn, Cu and Mn and synergistic effects between Zn and Fe in the root. Also, in Zn sufficient conditions, there were synergistic effects among all studies micronutrients which include Zn, Fe, Cu, and Mn.
基金financial support from the Department of Science and Technology of Jilin Province(20240304104SF,20240304103SF)the Research and Innovation Fund of the Beihua University for the Graduate Student(Major Project 2023012)。
文摘Lithium-ion batteries are widely recognized as prime candidates for energy storage devices.Ethylene carbonate(EC)has become a critical component in conventional commercial electrolytes due to its exceptional film-forming properties and high dielectric constant.However,the elevated freezing point,high viscosity,and strong solvation energy of EC significantly hinder the transport rate of Li^(+)and the desolvation process at low temperatures.This leads to substantial capacity loss and even lithium plating on graphite anodes.Herein,we have developed an efficient electrolyte system specifically designed for lowtemperature conditions,which consists of 1.0 M lithium bis(fluorosulfonyl)imide(LiFSI)in isoxazole(IZ)with fluorobenzene(FB)as an uncoordinated solvent and fluoroethylene carbonate(FEC)as a filmforming co-solvent.This system effectively lowers the desolvation energy of Li^(+)through dipole-dipole interactions.The weak solvation capability allows more anions to enter the solvation sheath,promoting the formation of contact ion pairs(CIPs)and aggregates(AGGs)that enhance the transport rate of Li^(+)while maintaining high ionic conductivity across a broad temperature range.Moreover,the formation of inorganic-dominant interfacial phases on the graphite anode,induced by fluoroethylene carbonate,significantly enhances the kinetics of Li^(+)transport.At a low temperature of-20℃,this electrolyte system achieves an impressive reversible capacity of 200.9 mAh g^(-1)in graphite half-cell,which is nearly three times that observed with conventional EC-based electrolytes,demonstrating excellent stability throughout its operation.
基金supported by A*STAR under the“Nanosystems at the Edge”program(Grant No.A18A4b0055)Ministry of Education(MOE)under the research grant of R-263-000-F18-112/A-0009520-01-00+1 种基金National Research Foundation Singapore grant CRP28-2022-0038the Reimagine Re-search Scheme(RRSC)Project(Grant A-0009037-02-00&A0009037-03-00)at National University of Singapore.
文摘Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions.
文摘This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.
文摘This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear industry.Sino-British scientific interactions took place across multiple dimensions,involving various institutions and individuals.Around 1949,UK-trained Chinese nuclear scientists returned to China,bringing advanced technological knowledge and extensive practical experience.The PRC regarded the UK as a crucial gateway to overcoming the technological blockade imposed by the United States(and later the Soviet Union)and sought to establish scientific relations with the UK through semi-official and unofficial channels.Specifically,these connections manifested in the interactions between the Chinese Academy of Sciences(CAS)and the Royal Society of London,the guiding role of the Chinese Charge d'Affaires Office in London in facilitating scientific and technological exchanges,and the technology investigations led by the Ministry of Foreign Trade in the name of trade.Additionally,the Sino-British scientific network extended to the international arena,allowing China to engage in nuclear-related global organizations and events.This study highlights the significant British influence on the early development of China's nuclear industry,revealing the extent of its British influence.It argues that China's urgent need for nuclear science and industrial advancement was a key driver of its scientific engagement withthe UK.
文摘The concept of neuroimmune interactions has shown significant advancements over the years. Modern research has revealed many areas of connection between fields, which were previously viewed as distinct disciplines. For example, the nervous system can sense changes in the external environment and convey these changes through molecules and mediators with receptors in the immune system to modulate immune responses. Neuromediators can act on different receptors in the same group of cells, producing antipodal effects. Identification of the anti-inflammatory role of glucocorticoids highlighted that the body functions properly in an integrated manner. These interactions and crosstalk are not unidirectional, as the immune system can also influence various aspects of the nervous system, such as synaptic plasticity and fever. Strict integration of neuro-immuno-endocrine circuits is indispensable for homeostasis. Understanding these circuits and molecules can lead to advances in the understanding of various immune diseases, which will offer promising therapeutic options.
基金supported by the Petrochemical Research Institute Foundation(21-CB-09-01)the National Natural Science Foundation of China(22302186,22025205)+1 种基金the China Postdoctoral Science Foundation(2022M713030,2023T160618)the Fundamental Research Funds for the Central Universities(WK2060000058,WK2060000038).
文摘By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability.
基金the National Natural Science Foundation of China(Nos.22307009,82374155,82073997,82104376)the Sichuan Science and Technology Program(Nos.2023NSFSC1108,2024NSFTD0023)+1 种基金the Postdoctoral Research Project of Sichuan Provincethe Xinglin Scholar Research Promotion Project of Chengdu University of TCM.
文摘Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype.
文摘Nuclear magnetic resonance(NMR)serves as a powerful tool for studying both the structure and dynamics of proteins.The NOE method,alongside residual dipolar;coupling,paramagnetic effects,J-coupling,and other related techniques,has reached a level of maturity that allows for the determination of protein structures.Furthermore,NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales.The properties of protein systems are dictated by intra-and intermo-lecular interactions among atoms,which involve covalent bonds,hydrogen bonds(H-bonds),electrostatic interactions,and van der Waals forces.Multiple NMR approaches have been developed to measure noncovalent interactions,and this paper offers a concise overview of noncovalent interaction measurements using NMR,with a specific emphasis on the advancements accomplished in our laboratory.
基金supported by the National Key R&D Program of China(No.2025YFE0104500)the Zhejiang Provincial Natural Science Foundation of China(No.LD25C140002),the Natural Science Foundation of Hangzhou(No.2024SZRZDC 130001)+1 种基金the National Natural Science Foundation of China(Nos.U21A20219 and 32122074)the Zhejiang University Global Partnership Fund,China.
文摘Chemical communication in plant–microbiome and intra-microbiome interactions weaves a complex network,critically shaping ecosystem stability and agricultural productivity.This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association.Plants leverage these signals to distinguish between pathogens and beneficial microbes,dynamically modulate immune responses,and secrete exudates to recruit a beneficial microbiome,while microbes in turn influence plant nutrient acquisition and stress resilience.Such bidirectional chemical dialogues underpin nutrient cycling,co-evolution,microbiome assembly,and plant resistance.However,knowledge gaps persist regarding validating the key molecules involved in plant–microbe interactions.Interpreting chemical communication requires multi-omics integration to predict key information,genome editing and click chemistry to verify the function of biomolecules,and artificial intelligence(AI)models to improve resolution and accuracy.This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.
基金co-supported by the National Natural Science Foundation of China (No. 12172175)the National Science and Technology Major Project, China (No. J2019-II0014-0035)the Science Center for Gas Turbine Project, China (Nos. P2022-C-II-002-001, P2022-A-II-002-001)
文摘Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.
基金supported by the National Natural Science Foundation of China(Nos.32271726 and 32171648)the Natural Science Foundation of Hubei Province of China(No.2022CFB030)。
文摘Soil denitrification,anammox,and Feammox are key for nitrogen(N)removal in agriculture.Despite potassium(K)fertilizer enhancing N efficiency,their role in regulation of these processes is unclear.A soil column incubation with 15N isotope tracingwas conducted to explore millimeter-scale interactions of N and K on these pathways in soil fertilization zones.After 28 days,individual applications of N and K reduced denitrification-nitrogen removal rate(DNRR),anammox-nitrogen removal rate(ANRR),and feammox-nitrogen removal rate(FNRR)compared to a non-fertilizer control.N fertilizer had a greater effect than K,likely due to the high consumption of dissolved organic carbon by N fertilizer or the increased soil organic matter decomposition by K fertilizer.Combing of N and K increased DNRR,ANRR and FNRR rates by 31%,3090%and 244%compared to single N,and by-53.7%,885%and 222%compared to single K.These effects diminished with depth and distance from fertilizer sites.The effects of N fertilizer on these N removal processes might be regulate abundance of key microbes(e.g.,Limnobacter and Clostridium)and key gene(nirK,hzsB,ACM and Geo)by providing N substrates,while K enhances N metabolism efficiency through enzyme activation,indicated by the downregulation of certain genes(hzsB,ACM and Geo)and a negative correlation with N removal by simultaneously increasing gene expression and enzyme activity.These findings provide insights into how N and K together enhance N removal,emphasizing their importance for optimizing this process.
基金supported by the Natural Science Foundation of Shanxi Province(202203021221155)the Foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal(J23-24-902)。
文摘With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12435006,12435007,12475117,12141501,and 123B2080)the National Key R&D Program of China(Grant No.2024YFE0109803)the National Key Laboratory of Neutron Science and Technology(Grant No.NST202401016)。
文摘The simultaneous description for nuclear matter and finite nuclei has been a long-standing challenge in nuclear ab initio theory.With the success for nuclear matter,the relativistic Brueckner-Hartree-Fock(RBHF)theory with covariant chiral interactions is a promising ab initio approach to describe both nuclear matter and finite nuclei.In the description of finite nuclei with the current RBHF theory,the covariant chiral interactions have to be localized to make calculations feasible.In order to examine the reliability and validity,in this letter,the RBHF theory with local and nonlocal covariant chiral interactions at leading order is applied to nuclear matter.The low-energy constants in the covariant chiral interactions determined with the local regularization are close to those with the nonlocal regularization.Moreover,the RBHF theory using covariant chiral interactions with local and nonlocal regulators provides an equally good description of the saturation properties of nuclear matter.The present work paves the way for the implementation of covariant chiral interactions in RBHF theory for finite nuclei.
基金supported in part by National Natural Science Foundation of China(No.51925102)National Key R&D Program of China(No.2022YFA1504101)。
文摘In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOOH plays an important role on the size and electronic structure of Cu nanoparticles,where Cu has the ultrafine size of 2.2 nm and positive shift of its valence states,which in turn causes the increased number of Cu active sites and enhanced intrinsic activity of every active site.As a result,this catalyst realizes an excellent catalytic performance on eNO_(3)RR with the maximal NH_(3)Faraday efficiency(FE)(96.8%)and the highest yield rate(55.51 mg h^(-1)cm^(-2))at a large NH_(3)partial current density of700 m A/cm^(2),which could help to promote the industrialization of NH_(3)production under ambient conditions.
基金supported by the National Natural Science Foundation of China(Nos.22161020,22022107,21801100)the Natural Science Foundation of Jiangxi Province(No.20212BAB203014)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology。
文摘Three monomers,namely A2,B2,and GH,were designed and synthesized.By utilizing double host-vip interactions,the monomers A2+B2+GH underwent self-assembly to form a supramolecular linear polymer(SLP)at high concentrations.Long fibers could be pulled from the concentrated SLP solution.Upon the addition of PdCl_(2)(PhCN)_(2)into the SLP solution,a structural transformation occurred from SLP to a supramolecular crosslinked polymer(SCP)through metal coordination interaction.This transformation induced fluorescence quenching,test paper strips for ion detection experiment confirmed that the SLP had good detection ability for Pd^(2+).Furthermore,the SCP underwent a transformation into a gel when the concentration exceeded 145 mmol/L.The SCP gel demonstrated sensitivity to different stimuli,such as K^(+)ions and changes in temperature,accompanied by a reversible transition between sol and gel states.Additionally,rheological analyses indicated that the gel possessed favorable self-healing properties.
基金funded by National Natural Science Foundation of China,grant number 52205292.
文摘To broaden the frequency regulation range of piezoelectric motors,this paper proposes a piezoelectric vibrator that operates in multiple in-plane vibration modes with distinct resonance frequencies.The piezoelectric vibrator was constructed by reasonably arranging multiple groups of piezoelectric ceramic(PZT)sheets based on the most typical rectangular plate piezoelectric motors.Suitable working modes were selected,and the excitation method of these operating modes was also analyzed.Besides,interactions between selected operating modes were also investigated.The finite element software,ANSYS,was adopted to optimize the structural parameters of the vibrator through modal analysis to match the resonance frequencies of specific modes.After that,whether the selected operating modes can be successfully motivated was verified by harmonic response analysis.Finally,the vibration characteristics of piezoelectric vibrators under conventional vibration modes and multiple modes were acquired by transient analysis,respectively.Simulation results reveal that under dual-frequency excitation scheme 1,response displacements of the driving point are relatively larger.This strategy not only facilitates the excitation of B4 mode but also enables control over the ratio of horizontal to vertical displacements of the driving point.Additionally,incorporating B4 mode expands the frequency adjustment range of piezoelectric vibrators.
基金financially supported by the Basic and Applied Basic Research Foundation of Guangdong Province(Grant Nos.2023A1515010890 and 2022A1515240039)the National Natural Science Foundation of China(Grant No.52001071)+4 种基金the Special Fund Competition Allocation Project of Guangdong Science and Technology Innovation Strategy(Grant No.2023A01022)the Non-funded Science and Technology Research Program Project of Zhanjiang(Grant No.2021B01416)Student Innovation Team Project of Guangdong Ocean University(Grant No.CXTD2023012)the Doctor Initiate Projects of Guangdong Ocean University(Grant Nos.060302072103 and R20068)the Marine Youth Talent Innovation Project of Zhanjiang(Grant No.2021E05009).
文摘The interaction between extreme waves and structures is a crucial study area in marine science,as it significantly influences safety and disaster prevention strategies for marine and coastal engineering.To investigate the flow field of a semi-submersible against extreme waves,a model simulating solitary wave interactions with the semi-submersible system was developed via the meshless smoothed particle hydrodynamics(SPH)method and Rayleigh’s theory.Notably,the wave surface and wave load results obtained from the SPH model,compared with those of OpenFOAM,result in an interaction test case between solitary waves and partially submerged rectangular obstacles and show good agreement,with a maximum relative error of 3.4%.An analysis of the calculated results of the semi-submersible facing solitary waves revealed several key findings:overtopping,which decreases with increasing water depth,occurs on the structure when the non-submerged ratio is 0.33 and the wave height surpasses 0.2 m.The transmission coefficient decreases with increasing wave height but increases as the water depth increases.Furthermore,the reflection coefficient peaks at a wave height H0=0.2 m.The dissipation coefficient displays a valley trend with a small water depth,whereas it increases monotonically with increasing water depth.The dissipation coefficient decreases with increasing water depth.