Industrial ebullated-bed is an important device for promoting the cleaning and upgrading of oil products. The lumped kinetic model is a powerful tool for predicting the product yield of the ebullated-bed residue hydro...Industrial ebullated-bed is an important device for promoting the cleaning and upgrading of oil products. The lumped kinetic model is a powerful tool for predicting the product yield of the ebullated-bed residue hydrogenation (EBRH) unit, However, during the long-term operation of the device, there are phenomena such as low frequency of material property analysis leading to limited operating data and diverse operating modes at the same time scale, which poses a huge challenge to building an accurate product yield prediction model. To address these challenges, a data augmentation-based eleven lumped reaction kinetics mechanism model was constructed. This model combines generative adversarial networks, outlier elimination, and L2 norm data filtering to expand the dataset and utilizes kernel principal component analysis-fuzzy C-means for operating condition partitioning. Based on the hydrogenation reaction mechanism, a single and sub operating condition eleven lumped reaction kinetics model of an ebullated-bed residue hydrogenation unit, comprising 55 reaction paths and 110 parameters, was constructed before and after data augmentation. Compared to the single model before data enhancement, the average absolute error of the sub-models under data enhancement division was reduced by 23%. Thus, these findings can help guide the operation and optimization of the production process.展开更多
Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In orde...Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication.展开更多
The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F...The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.展开更多
Topological states realized in metamaterials have provided a versatile platform for exploring topological physics and enabling novel applications,with topolectrical circuits emerging as a prominent example.However,pre...Topological states realized in metamaterials have provided a versatile platform for exploring topological physics and enabling novel applications,with topolectrical circuits emerging as a prominent example.However,previous research in this feld has primarily focused on lumped-element implementations,while non-lumped microwave circuits remain relatively underexplored.In this work,we design and investigate a one-dimensional non-lumped Su–Schriefer–Heeger topolectrical circuit composed of copper parallel-plate transmission lines and inductors,ofering compatibility with integrated microwave applications.Full-wave microwave simulations in the 0–10 GHz range show excellent agreement with theoretical predictions.The impedance spectrum of a fveunit-cell system displays periodic resonant passbands and stopbands corresponding to bulk states,while distinct high-Q(on the order of 10^(2))topological boundary resonances(TBRs)emerge within the stopbands,indicating the presence of localized edge states.Furthermore,the TBRs vanish when the system is reconfgured into the trivial phase,providing direct evidence of its topological nature.These response characteristics make the proposed resonator a promising candidate for future microwave devices and topological circuit applications.展开更多
本文应用Hirota双线性方法探讨了(2 + 1)维Boiti-Leon-Manna-Pempinelli (BLMP)方程的解及其相互作用。该方法的一个特点是使用对数变换将方程转化为双线性形式,且我们在对数变换中引入了非零常数。本文分析了1-lump波分别与1-kink孤波...本文应用Hirota双线性方法探讨了(2 + 1)维Boiti-Leon-Manna-Pempinelli (BLMP)方程的解及其相互作用。该方法的一个特点是使用对数变换将方程转化为双线性形式,且我们在对数变换中引入了非零常数。本文分析了1-lump波分别与1-kink孤波和2-kink孤波之间的相互作用,揭示了它们的弹性和共振碰撞行为。为了进一步说明这些解的特征,我们利用Mathematica软件提供了详细的三维图示结果。In this study, we investigate the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equations using the Hirota bilinear method. A feature of our approach is the use of a logarithmic transformation to convert the equation into bilinear form with the introduction of a nonzero constant in the transformation. We analyze the interaction dynamics of lump solutions with one and two kink solitons, revealing their elastic and resonant collision behaviors. To further illustrate the characteristics of these solutions, we provide detailed 3D plots using the Mathematica software.展开更多
In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orie...In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orientation and edge of the reflections. The information is usually estimated from seismic data with full frequency bandwidth. When the data has a very low signal to noise ratio (SNR), the noise usually reduces the estimation accuracy. For seismic data with extremely low SNR, the dominant frequency has higher SNR than other frequencies, so it can provide orientation and edge information more reliably than other frequencies. Orientation and edge are usually described in terms of apparent reflection dips and coherence differences, respectively. When frequency changes, both dip and coherence difference change more slowly than the seismogram itself. For this reason, dip and coherence estimated from dominant frequency data can approximately represent those of other frequency data. Ricker wavelet are widely used in seismic modeling. The Marr wavelet has the same shape as Ricker wavelets in both time and frequency domains, so the Marr wavelet transform is selected to divide seismic data into several frequency bands. Reflection apparent dip as well as the edge information can be obtained by scanning the dominant frequency data. This information can be used to selectively smooth the frequency bands (dominant, low, and high frequencies) separately by structure-oriented edge-preserving smoothing technology. The ultimate noise-suppressed seismic data is the combination of the smoothed frequency band data. Application to synthetic and real data shows the method can effectively reduce noise, preserve edges, improve trackable reflection continuity, and maintain useful information in seismic data.展开更多
Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in pet...Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in petroleum fractions. To achieve molecular management in refining processes, a novel model that is based on structure oriented lumping(SOL) and group contribution(GC) methods was proposed in this study. SOL method was applied to describe a petroleum fraction with structural increments, and GC method aimed to estimate molecular properties. The latter was achieved by associating rules between SOL structural increments and GC structures. A three-step reconstruction algorithm was developed to build a representative set of molecules from partial analytical data. First, structural distribution parameters were optimized with several properties. Then, a molecular library was created by using the optimized parameters. In the final step, maximum information entropy(MIE) method was applied to obtain a molecular fraction. Two industrial samples were used to validate the method, and the simulation results of the feedstock properties agreed well with the experimental data.展开更多
Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this...Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.展开更多
In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to deri...In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.展开更多
By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some n...By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.展开更多
基金supported by National Natural Science Foundation of China(Basic Science Center Program:61988101)National Natural Science Foundation of China(62394345,62373155,62173147)the Major Science and Technology Project of Xinjiang(No.2022A01006-4).
文摘Industrial ebullated-bed is an important device for promoting the cleaning and upgrading of oil products. The lumped kinetic model is a powerful tool for predicting the product yield of the ebullated-bed residue hydrogenation (EBRH) unit, However, during the long-term operation of the device, there are phenomena such as low frequency of material property analysis leading to limited operating data and diverse operating modes at the same time scale, which poses a huge challenge to building an accurate product yield prediction model. To address these challenges, a data augmentation-based eleven lumped reaction kinetics mechanism model was constructed. This model combines generative adversarial networks, outlier elimination, and L2 norm data filtering to expand the dataset and utilizes kernel principal component analysis-fuzzy C-means for operating condition partitioning. Based on the hydrogenation reaction mechanism, a single and sub operating condition eleven lumped reaction kinetics model of an ebullated-bed residue hydrogenation unit, comprising 55 reaction paths and 110 parameters, was constructed before and after data augmentation. Compared to the single model before data enhancement, the average absolute error of the sub-models under data enhancement division was reduced by 23%. Thus, these findings can help guide the operation and optimization of the production process.
基金the Shaanxi Provincial Key Research and Development Program(No.2020GY-040)。
文摘Design of a miniaturized lumped-element bandpass filter in multilayer liquid crystal polymer technology is proposed.Fractional bandwidth of the bandpass filter is 20%,operating at a center frequency of 500 MHz.In order to further reduce the size and improve the performance of the proposed filter,defected ground structure(DGS)has been implemented in the filter.Based on this structure,the volume of the inductor is reduced by 60%eficiently compared with the inductor without DGS,and the Q-factor is increased up to 257%compared with the traditional multilayer spiral inductor.The measured results indicate that the designed filter has a very sharp stopband,an insertion loss of 2.3dB,and a return loss of 18.6dB in the passband.The whole volume of the fabricated filter is 0.032入_(g)×0.05入_(g)×0.00075入_(g),where Ag is the guided wavelength of the center frequency.The proposed filter is easily integrated into radio-frequency/microwave circuitry at a low manufacturing cost,especially wireless communication.
基金the French Defense Innovation Agency (AID)the French Procurement Agency for Armament (DGA)ONERA's scientific direction for funding and supporting the present work
文摘The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.
基金supported by the National Natural Science Foundation of China(Grant No.11874431)the National Key R&D Program of China(Grant No.2018YFA0306800)。
文摘Topological states realized in metamaterials have provided a versatile platform for exploring topological physics and enabling novel applications,with topolectrical circuits emerging as a prominent example.However,previous research in this feld has primarily focused on lumped-element implementations,while non-lumped microwave circuits remain relatively underexplored.In this work,we design and investigate a one-dimensional non-lumped Su–Schriefer–Heeger topolectrical circuit composed of copper parallel-plate transmission lines and inductors,ofering compatibility with integrated microwave applications.Full-wave microwave simulations in the 0–10 GHz range show excellent agreement with theoretical predictions.The impedance spectrum of a fveunit-cell system displays periodic resonant passbands and stopbands corresponding to bulk states,while distinct high-Q(on the order of 10^(2))topological boundary resonances(TBRs)emerge within the stopbands,indicating the presence of localized edge states.Furthermore,the TBRs vanish when the system is reconfgured into the trivial phase,providing direct evidence of its topological nature.These response characteristics make the proposed resonator a promising candidate for future microwave devices and topological circuit applications.
文摘本文应用Hirota双线性方法探讨了(2 + 1)维Boiti-Leon-Manna-Pempinelli (BLMP)方程的解及其相互作用。该方法的一个特点是使用对数变换将方程转化为双线性形式,且我们在对数变换中引入了非零常数。本文分析了1-lump波分别与1-kink孤波和2-kink孤波之间的相互作用,揭示了它们的弹性和共振碰撞行为。为了进一步说明这些解的特征,我们利用Mathematica软件提供了详细的三维图示结果。In this study, we investigate the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equations using the Hirota bilinear method. A feature of our approach is the use of a logarithmic transformation to convert the equation into bilinear form with the introduction of a nonzero constant in the transformation. We analyze the interaction dynamics of lump solutions with one and two kink solitons, revealing their elastic and resonant collision behaviors. To further illustrate the characteristics of these solutions, we provide detailed 3D plots using the Mathematica software.
基金supported by China National Petroleum Corporation (CNPC) Innovation Fund (Grant No.07E1019)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (Grant No.200804251502)
文摘In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orientation and edge of the reflections. The information is usually estimated from seismic data with full frequency bandwidth. When the data has a very low signal to noise ratio (SNR), the noise usually reduces the estimation accuracy. For seismic data with extremely low SNR, the dominant frequency has higher SNR than other frequencies, so it can provide orientation and edge information more reliably than other frequencies. Orientation and edge are usually described in terms of apparent reflection dips and coherence differences, respectively. When frequency changes, both dip and coherence difference change more slowly than the seismogram itself. For this reason, dip and coherence estimated from dominant frequency data can approximately represent those of other frequency data. Ricker wavelet are widely used in seismic modeling. The Marr wavelet has the same shape as Ricker wavelets in both time and frequency domains, so the Marr wavelet transform is selected to divide seismic data into several frequency bands. Reflection apparent dip as well as the edge information can be obtained by scanning the dominant frequency data. This information can be used to selectively smooth the frequency bands (dominant, low, and high frequencies) separately by structure-oriented edge-preserving smoothing technology. The ultimate noise-suppressed seismic data is the combination of the smoothed frequency band data. Application to synthetic and real data shows the method can effectively reduce noise, preserve edges, improve trackable reflection continuity, and maintain useful information in seismic data.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in petroleum fractions. To achieve molecular management in refining processes, a novel model that is based on structure oriented lumping(SOL) and group contribution(GC) methods was proposed in this study. SOL method was applied to describe a petroleum fraction with structural increments, and GC method aimed to estimate molecular properties. The latter was achieved by associating rules between SOL structural increments and GC structures. A three-step reconstruction algorithm was developed to build a representative set of molecules from partial analytical data. First, structural distribution parameters were optimized with several properties. Then, a molecular library was created by using the optimized parameters. In the final step, maximum information entropy(MIE) method was applied to obtain a molecular fraction. Two industrial samples were used to validate the method, and the simulation results of the feedstock properties agreed well with the experimental data.
文摘Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.
基金supported by the National Natural Science Foundation of China(Nos.12101572,12371256)2023 Shanxi Province Graduate Innovation Project(No.2023KY614)the 19th Graduate Science and Technology Project of North University of China(No.20231943)。
文摘In this paper,we mainly focus on proving the existence of lump solutions to a generalized(3+1)-dimensional nonlinear differential equation.Hirota’s bilinear method and a quadratic function method are employed to derive the lump solutions localized in the whole plane for a(3+1)-dimensional nonlinear differential equation.Three examples of such a nonlinear equation are presented to investigate the exact expressions of the lump solutions.Moreover,the 3d plots and corresponding density plots of the solutions are given to show the space structures of the lump waves.In addition,the breath-wave solutions and several interaction solutions of the(3+1)-dimensional nonlinear differential equation are obtained and their dynamics are analyzed.
文摘By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given.