Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure wa...Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure was still retained in the FSP-WA-DED component besides the processed zone(PZ),thus forming a composite structure.Considering the material utilization and practical service process of the deposited component,more attention should be paid on this special composite structure,but the relevant investigation has not been carried out.In this study,an Al–Mg–Sc alloy was prepared by WA-DED with interlayer FSP treatment,and the composite structure was frstly investigated.Almost all of the pores were eliminated under the pressure efect from the tool shoulder.The grains were further refned with an average size of about 1.2μm in the PZ.Though no severe plastic deformation was involved in the retained WA-DED deposition zone,comparable tensile properties with the PZ sample were obtained in the composite structure.Low ultimate tensile strength(UTS)of 289 MPa and elongation of 3.2%were achieved in the WA-DED sample.After interlayer FSP treatment,the UTS and elongation of the PZ samples were signifcantly increased to 443 MPa and 16.3%,while those in the composite structure remained at relatively high levels of 410 MPa and 13.5%,respectively.Meanwhile,a high fatigue strength of 180 and 130 MPa was obtained in the PZ and composite structure samples,which was clearly higher than that of the WA-DED sample(100 MPa).It is concluded that the defects in traditional WA-DED process can be eliminated in the composite structure after interlayer FSP treatment,resulting in enhanced tensile and fatigue properties,which provides an efective method of improving the mechanical properties of the WA-DED sample.展开更多
In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. He...In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. Here, we report such an example and following up by modifying the solvothermal reaction conditions (temperature and time) it is possible to isolate the high mass species in crystalline form. [Zn_(4)L_(4)Cl_(4)] (Zn_(4)L_(4), L = N-methylbenzimidazole-2-methanolate) has a boat-like Zn_(4)O_(4) core but electrospray ionization mass spectrometry (ESI-MS) of the solution of its crystals shows higher mass peaks of Zn_(5)L_(5), Zn_(5)L_(6) and Zn_(6)L_(6) species. Thus, both disassembly and reassembly are highly probable processes. Consequently, [Zn(HL)_(2)Cl_(2)] (Zn1, L = N-methylbenzimidazole-2-methanolate), [Zn_(4)L_(6)Cl_(2)] (Zn_(4)L_(6), L = N-methylbenzimidazole-2-methanolate) and [Zn_(6)L_(6)Cl_(4)(CH_(3)O)_(2)] (Zn_(6)L_(6), L = N-methylbenzimidazole-2-methanolate) were prepared. The results of multistage ESI-MS of their dissolved crystals led to a proposed mechanism of their formation in the gas phase as follows: [Zn_(3)L_(4)] through [ZnL] → [ZnL(HL)] → [Zn(HL)_(2)] → [Zn_(2)L] → [Zn_(2)L_(2)] → [Zn_(2)L_(3)]. The mechanism was derived in conjunction with Gibbs free energies calculated using DFT of the fragments observed in the ESI-MS of Zn_(4)L_(4), Zn_(4)L_(6) and Zn_(6)L_(6). This work reveals the complex of chemical reactions, involving fragmentation and unexpected combination, under mass spectrometry condition which allows one to synthesize the observed transients, leading to mechanism of formation by correlation of solid-state/solution structural information.展开更多
For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,...For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,an ultrafine bimodal microstructure,consisting of ultrafine equiaxed microstructure(0.66μm)and 43.3%lamellar microstructure,was achieved in the Ti-6Al-4V alloy by friction stir processing(FSP).The low-temperature superplastic behavior and deformation mechanism of the FSP Ti-6Al-4V alloy were investigated at temperatures of 550-675℃and strain rates ranging from 1×10^(−4)to 3×10^(−3)s^(−1).The FSP alloy exhibited superplastic elongations of>200%at the temperature range from 550 to 650℃,and an optimal superplastic elongation of 611%was achieved at 625℃and 1×10^(−4)s^(−1).This is the first time to report the low-temperature superplasticity of the bimodal microstructure in Ti alloys.Grain boundary sliding was identified as the dominant deformation mechanism,which was effectively accommodated by the comprehensive effect of dislocation-inducedβphase precipitation and dynamic spheroidization of the lamellar structure.This study provides a novel insight into the low-temperature superplastic deformation behavior of the bimodal microstructure.展开更多
In order to clarify the preparation process parameters of manufactured sand,optimize its quality,and analyze the effect of its grading on the microstructure of concrete,the three-dimensional models of jaw crusher,vibr...In order to clarify the preparation process parameters of manufactured sand,optimize its quality,and analyze the effect of its grading on the microstructure of concrete,the three-dimensional models of jaw crusher,vibrating screen and conveyor belt were established by using SolidWorks 2016 software.Rocky DEM4.5 software was used to simulate the initial crushing,screening,and transportation stages of the manufactured sand preparation process,with Linear Spring Dashpot as the normal contact model and Coulomb as the tangential contact model;furthermore,the key process parameters were defined.The manufactured sand grading model was then proposed,thereby,the influence of the grading of manufactured sand on the distribution of pore structure in concrete and the interfacial transition zone(ITZ)was studied.The experimetal results show that the particle size of granite,after being crushed in the jaw crusher,is primarily concentrated between 80 and 130 mm,with a crushing energy consumption typically below 100000 J.However,certain instances of granite exhibit higher energy consumption due to undergoing multiple crushings within the chamber.At the same time,the granite causes significant wear on the jaw crusher plate.Furthermore,the tilt angle of the vibrating screen should be adjusted to between 10 and 15 degrees,while the layout angle of the conveyor belt needs to be set at 16 degrees.The proposed manufactured sand grading model is feasible,and the pore diameter distribution inside concrete increases with an increase in the fineness modulus of manufactured sand.展开更多
This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrheni...This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions.The predictive capability of both models was assessed using the coefficients of determination(R^(2)),average absolute relative error(AARE),and root mean square error(RMSE).The findings show that the osprey optimization algorithm convolutional neural network(OOA-CNN)model outperforms the Arrhenius model,achieving a high R^(2) value of 0.99959 and lower AARE and RMSE values.The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains.Finally,combining the processing map and microstructure characterization,the ideal processing domain was identified as 1100℃ at strain rates of 0.01-0.1 s^(-1).This study provided key insights into optimizing the hot working process of CoNiV MEA.展开更多
The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experim...The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experiments.Based on the obtained flow stresses,a strain-compensated Arrhenius-type model was developed for the description of hot deformation behavior,and the consistency of the predicted flow stresses with the experimental values confirms the accuracy of the developed model.Furthermore,the processing maps were constructed and classified into the instability domain,low-dissipation stability domain and high-dissipation stability domain in accordance with the dynamic material model and the instability criterion.Microstructure observations indicated that the instability domain exhibits the adiabatic shear bands formation,and the low-power dissipation domain exhibits partial dynamic recrystallization(DRX),with the temperature increase/strain rate decrease being favorable for the DRX.The high-dissipation stability domain was occupied by uniformly fine equiaxed grains,and was identified as the optimal processing window,which corresponds to the deformation conditions at 1070–1150℃ with strain rates ranging from 0.01 to 0.15 s^(–1).Moreover,various DRX mechanisms are observed to occur during the hot deformation,which include the discontinuous dynamic recrystallization,characterized by nucleation at bulged boundaries,the continuous dynamic recrystallization with subgrain progressive rotation and the particle stimulated nucleation mechanism with stimulated nucleation of carbide particles.展开更多
Avoiding crystallization while maintaining the original microstructure and mechanical properties of the material are long-term goals of laser welding of Zr-based bulk metallic glass(BMG).In this paper,the effect of pu...Avoiding crystallization while maintaining the original microstructure and mechanical properties of the material are long-term goals of laser welding of Zr-based bulk metallic glass(BMG).In this paper,the effect of pulsed laser welding parameters on the microstructure,crystallization degree,and mechanical properties of Zr57Nb5Cu15.4Ni12.6Al10 BMG is investigated.Non-crystallized welding forming of a zirconium-based amorphous alloy is achieved by optimizing the process parameters of pulsed laser welding.The crystallization degree of Zr-based BMG is mainly determined by the welding speed and power.The welding depth and crystallization area fraction increase with an increase in the effective peak power density.The optimized welding process can effectively reduce the heat accumulation of the weld,thus avoiding crystallization.The flexural strength of the weld can be maintained at 96.5%of the matrix.展开更多
Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties...Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6.展开更多
Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via l...Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via laser powder bed fusion(LPBF)to obtain high-performance aluminum alloys.To this end,process parameter optimization and heat treatment were adopted.The optimal process parameters were determined by initially analyzing the relative density and defect distribution under varying energy densities.The sample obtained under the optimal process parameters exhibited a relative density of 99.84%.Subsequently,the corresponding phase compositions,microstructures,and mechanical performance of the as-fabricated specimens were determined using the optimal process parameters before and after heat treatment.The microstructures of the samples showed typical equiaxed columnar bimodal grain structures,with Al_(3)(Sc,Zr)precipitates detected.The samples exhibited no significant anisotropy before and after heat treatment,while the grain orientation differences were dominated by high-angle grain boundaries.The mechanical properties of all the samples were characterized using tensile and hardness tests.The yield strength,ultimate tensile strength,and elongation of the sample were 475.0 MPa,508.2 MPa,and 8.3%,respectively.Overall,samples with high density,low porosity,high strength,and high plasticity were obtained by process parameter optimization and appropriate heat treatment.展开更多
The microstructure development of 55VNb1 microalloyed steel after warm deformation via multi-pass biaxial compression tests was studied,and the effect of thermomechanical conditions on spheroidisation of cementite lam...The microstructure development of 55VNb1 microalloyed steel after warm deformation via multi-pass biaxial compression tests was studied,and the effect of thermomechanical conditions on spheroidisation of cementite lamellae and ferrite recrystallisation for a range of deformation temperatures(600–700℃),cooling/soaking time(water quenching,air cooling,10 and 30 min of soaking time)and interpass time(0–10 s)was analysed.During deformation,the spheroidisation of pearlite is dynamically accelerated mainly by boundary splitting mechanism together with the rapid dissolution of cementite,while ferrite softening is attributed to dynamic recovery and continuous dynamic recrystallisation.The strong microstructural evolution during cooling/soaking time indicates that deformation energy accumulated is sufficient to activate metallurgical phenomena in both phases also statically.Static spheroidisation is a diffusive process,with rate controlled by the diffusion of vacancies,as suggested by the estimated activation energy.Ferrite refinement is the result of the evolution of continuous recrystallisation and pinning effect exerted by fine,globulised and homogeneously dispersed cementite particles.Increasing temperature causes accelerated kinetics in metallurgical phenomena;therefore,cooling/soaking time becomes key parameters to achieve ultrafine grained and spheroidised microstructures.Interpass time favours spheroidisation and promotes continuous recrystallisation;however,it must be carefully controlled to find a balance between recrystallisation and Ostwald ripening to optimise microstructural development.展开更多
The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the micro...The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the microstructure,mechanical properties,and electrical conductivity of a Cu−0.7Mg(wt.%)alloy,were investigated.The simulation results highlighted the critical influence of processing history on determining the equivalent strain distribution.The sample subjected to forward extrusion at 400℃and subsequent MaxStrain processing(FM sample),possessed 76%lower grain size compared to the sample processed solely with MaxStrain(AM sample).Likewise,the KoBo-extruded and MaxStrain-processed sample(KM sample)exhibited 66%smaller grain size compared to the AM sample.Tensile test results revealed that the AM,FM,and KM samples,respectively,possessed 251%,288%,and 360%higher yield strength,and 95%,121%,and 169%higher tensile strength compared to the initial annealed alloy,as a result of grain refinement as well as deformation strengthening.Finally,the electrical conductivity measurements revealed that AM,FM,and KM samples,respectively,possessed electrical conductivity values of 37.9,35.6,and 32.0 MS/m,which,by considering their mechanical properties,makes them eligible to be categorized as high-strength and high-conductivity copper alloys.展开更多
Additive manufacturing(AM)has revolutionized modern manufacturing,but the application of magnesium(Mg)alloys in laser-based AM remains underexplored due to challenges such as oxidation,low boiling point,and thermal ex...Additive manufacturing(AM)has revolutionized modern manufacturing,but the application of magnesium(Mg)alloys in laser-based AM remains underexplored due to challenges such as oxidation,low boiling point,and thermal expansion,which lead to defects like porosity and cracking.This study provides a comprehensive analysis of microstructure changes in WE43 magnesium(Mg)alloy after laser surface melting(LSM),examining grain morphology,orientation,size,microsegregation,and defects under various combinations of laser power,scan speed,and spot size.Ourfindings reveal that variations in laser power and spot size exert a more significant influence on the depth and aspect ratio of the keyhole melt pool compared to laser scan speed.Critically,we demonstrate that laser energy density,while widely used as a quantitative metric to describe the combined effects of process parameters,exhibits significant limitations.Notable variations in melt pool depth,normalized width,and microstructure with laser energy density were observed,as reflected by low R²values.Additionally,we underscore the importance of assessing the temperature gradient across the width of the melt pool,which determines whether conduction or keyhole melting modes dominate.These modes exhibit distinct heatflow mechanisms and yield fundamentally different microstructural outcomes.Furthermore,we show that the microstructure and grain size in conduction mode exhibit a good correlation with the temperature gradient(G)and solidification rate(R).This research provides a framework for achieving localized microstructural control in LSM,providing insights to optimize process parameters for laser-based 3D printing of Mg alloys,and advancing the integration of Mg alloys into AM technologies.展开更多
Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation beh...Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation behavior and microstructure evolution of millimeter-grade coarse grains(MCGs)in the as-cast Ti-6Cr-5Mo-5V-4Al(Ti-6554)alloy were studied,and a hot processing map was established.Under compression along the rolling direction(RD),continuous dynamic recrystallization(CDRX)ensues due to the progressive rotation of subgrains within the MCGs.Along the transverse direction(TD),discontinuous dynamic recrystallization(DDRX)resulting from grain boundary bulging or bridging,occurs on the boundaries of the MCGs.With decreasing strain rate,increasing temperature,and higher deformation degree,dynamic recrystallization becomes more pronounced,resulting in a reduction in the original average grain size.The optimal processing parameters fall within a temperature range of 1050-1150℃,a strain rate of 0.01 s^(-1),and a deformation degree between 40%and 60%.展开更多
Ti-Zr-Cu alloy has garnered signifcant attention in the feld of dental implants due to its excellent biocompatibility,antibacterial properties,and potentially controllable mechanical properties.However,two critical ch...Ti-Zr-Cu alloy has garnered signifcant attention in the feld of dental implants due to its excellent biocompatibility,antibacterial properties,and potentially controllable mechanical properties.However,two critical challenges remain in the selective laser melting(SLM)fabrication of Ti-Zr-Cu alloy:First,the high thermal conductivity of the Cu element tends to destabilize the solidifcation behavior of the molten pool,leading to uncontrollable pore defect evolution;Second,the infuence of process parameters on the synergistic efects of zirconium solution strengthening and copper precipitation strengthening is not well understood,hindering precise control over the material's mechanical properties.To address these issues,this study systematically elucidates the quantitative impact of energy input on the defect formation mechanisms and strengthening efects in the SLM processing of Ti15Zr5Cu alloy.By optimizing laser power(120–200 W)and scanning speed(450–1200 mm/s)through a full-factor experimental design,we comprehensively analyze the efects of energy input on defect morphology,microstructure evolution,and mechanical performance.The results demonstrate that as energy density decreases,defect types transition from spherical pores to irregular pores,signifcantly infuencing mechanical properties.Based on the defect evolution trends,three distinct energy density regions are identifed:the high-energy region,the lowenergy region,and the transition region.Under the optimal processing conditions of a laser power of 180 W and a scanning speed of 1200 mm/s,the Ti15Zr5Cu alloy exhibits a relative density of 99.998%,a tensile strength of 1490±11 MPa,and an elongation at break of 6.0%±0.5%.These properties ensure that the material satisfes the stringent requirements for high strength in narrow-diameter implants used in the maxilloanterior region.This study provides theoretical and experimental support for the process-property optimization of Ti-Zr-Cu alloys in additive manufacturing and promotes their application in the fabrication of high-performance,antibacterial dental implants.展开更多
The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prep...The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prepared through distinct pretreatments,were systematically analyzed.Morphological analysis reveals that while both thickαplatelets and coarse priorβgrains impede the spheroidization of lamellar structures,the influence of the former is more pronounced.Variations inαplatelet thickness priorβgrain size exhibit limited impact on the macro-texture type after deformation and annealing.The proportion of low-angle interfaces between the c-axis of the primaryαphase and the<110>direction of the priorβgrains was elevated in rods with thicker platelets compared to thinner ones.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
We study age-structured branching models with reproduction law depending on the remaining lifetime of the parent. The lifespan of an individual is determined at its birth and its remaining lifetime decreases at the un...We study age-structured branching models with reproduction law depending on the remaining lifetime of the parent. The lifespan of an individual is determined at its birth and its remaining lifetime decreases at the unit speed. The models, without or with immigration, are constructed as measure-valued processes by pathwise unique solutions of stochastic equations driven by time-space Poisson random measures. In the subcritical branching case, we give a sufficient condition for the ergodicity of the process with immigration. Two large number laws and a central limit theorem of the occupation times are proved.展开更多
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on...Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.展开更多
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr...Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
基金supported by the National Natural Science Foundation of China(No.U23A20538)the Fundamental Research Funds for the Universities of Liaoning Province,Shenyang U40 Outstanding Youth Foundation(No.RC230864)+1 种基金the Foundation of CAS Henan Industrial Technology Innovation&Incubation Center(No.2024110)the Natural Science Foundation of Liaoning Province(No.2023-BS-016)。
文摘Interlayer friction stir processing(FSP)has been proved to be an efective method of enhancing the mechanical properties of wire arc-directed energy deposited(WA-DED)samples.However,the original deposition structure was still retained in the FSP-WA-DED component besides the processed zone(PZ),thus forming a composite structure.Considering the material utilization and practical service process of the deposited component,more attention should be paid on this special composite structure,but the relevant investigation has not been carried out.In this study,an Al–Mg–Sc alloy was prepared by WA-DED with interlayer FSP treatment,and the composite structure was frstly investigated.Almost all of the pores were eliminated under the pressure efect from the tool shoulder.The grains were further refned with an average size of about 1.2μm in the PZ.Though no severe plastic deformation was involved in the retained WA-DED deposition zone,comparable tensile properties with the PZ sample were obtained in the composite structure.Low ultimate tensile strength(UTS)of 289 MPa and elongation of 3.2%were achieved in the WA-DED sample.After interlayer FSP treatment,the UTS and elongation of the PZ samples were signifcantly increased to 443 MPa and 16.3%,while those in the composite structure remained at relatively high levels of 410 MPa and 13.5%,respectively.Meanwhile,a high fatigue strength of 180 and 130 MPa was obtained in the PZ and composite structure samples,which was clearly higher than that of the WA-DED sample(100 MPa).It is concluded that the defects in traditional WA-DED process can be eliminated in the composite structure after interlayer FSP treatment,resulting in enhanced tensile and fatigue properties,which provides an efective method of improving the mechanical properties of the WA-DED sample.
基金supported by the BAGUI Talent Program in Guangxi Province(No.2019AC26001),and the National Natural Science Foundation of China(No.22171075,U23A2080).
文摘In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. Here, we report such an example and following up by modifying the solvothermal reaction conditions (temperature and time) it is possible to isolate the high mass species in crystalline form. [Zn_(4)L_(4)Cl_(4)] (Zn_(4)L_(4), L = N-methylbenzimidazole-2-methanolate) has a boat-like Zn_(4)O_(4) core but electrospray ionization mass spectrometry (ESI-MS) of the solution of its crystals shows higher mass peaks of Zn_(5)L_(5), Zn_(5)L_(6) and Zn_(6)L_(6) species. Thus, both disassembly and reassembly are highly probable processes. Consequently, [Zn(HL)_(2)Cl_(2)] (Zn1, L = N-methylbenzimidazole-2-methanolate), [Zn_(4)L_(6)Cl_(2)] (Zn_(4)L_(6), L = N-methylbenzimidazole-2-methanolate) and [Zn_(6)L_(6)Cl_(4)(CH_(3)O)_(2)] (Zn_(6)L_(6), L = N-methylbenzimidazole-2-methanolate) were prepared. The results of multistage ESI-MS of their dissolved crystals led to a proposed mechanism of their formation in the gas phase as follows: [Zn_(3)L_(4)] through [ZnL] → [ZnL(HL)] → [Zn(HL)_(2)] → [Zn_(2)L] → [Zn_(2)L_(2)] → [Zn_(2)L_(3)]. The mechanism was derived in conjunction with Gibbs free energies calculated using DFT of the fragments observed in the ESI-MS of Zn_(4)L_(4), Zn_(4)L_(6) and Zn_(6)L_(6). This work reveals the complex of chemical reactions, involving fragmentation and unexpected combination, under mass spectrometry condition which allows one to synthesize the observed transients, leading to mechanism of formation by correlation of solid-state/solution structural information.
基金supported by the funding from the Shi Changxu Innovation Center for Advanced Materials(No.SCXKFJJ202210)the National Natural Science Foundation of China(No.52271043)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021193)the Liaoning Province Excellent Youth Foundation(No.2024JH3/10200021)the Liaoning Revitalization Talents Program(No.XLYC2403094).
文摘For a long time,the conventional superplastic forming temperature for Ti alloys is generally too high(~900-920℃),which leads to too long production cycles,heavy surface oxidation,and property reduction.In this study,an ultrafine bimodal microstructure,consisting of ultrafine equiaxed microstructure(0.66μm)and 43.3%lamellar microstructure,was achieved in the Ti-6Al-4V alloy by friction stir processing(FSP).The low-temperature superplastic behavior and deformation mechanism of the FSP Ti-6Al-4V alloy were investigated at temperatures of 550-675℃and strain rates ranging from 1×10^(−4)to 3×10^(−3)s^(−1).The FSP alloy exhibited superplastic elongations of>200%at the temperature range from 550 to 650℃,and an optimal superplastic elongation of 611%was achieved at 625℃and 1×10^(−4)s^(−1).This is the first time to report the low-temperature superplasticity of the bimodal microstructure in Ti alloys.Grain boundary sliding was identified as the dominant deformation mechanism,which was effectively accommodated by the comprehensive effect of dislocation-inducedβphase precipitation and dynamic spheroidization of the lamellar structure.This study provides a novel insight into the low-temperature superplastic deformation behavior of the bimodal microstructure.
基金Funded by the National Natural Science Foundation of China(Nos.U21A20150,51978339,and 52178237)。
文摘In order to clarify the preparation process parameters of manufactured sand,optimize its quality,and analyze the effect of its grading on the microstructure of concrete,the three-dimensional models of jaw crusher,vibrating screen and conveyor belt were established by using SolidWorks 2016 software.Rocky DEM4.5 software was used to simulate the initial crushing,screening,and transportation stages of the manufactured sand preparation process,with Linear Spring Dashpot as the normal contact model and Coulomb as the tangential contact model;furthermore,the key process parameters were defined.The manufactured sand grading model was then proposed,thereby,the influence of the grading of manufactured sand on the distribution of pore structure in concrete and the interfacial transition zone(ITZ)was studied.The experimetal results show that the particle size of granite,after being crushed in the jaw crusher,is primarily concentrated between 80 and 130 mm,with a crushing energy consumption typically below 100000 J.However,certain instances of granite exhibit higher energy consumption due to undergoing multiple crushings within the chamber.At the same time,the granite causes significant wear on the jaw crusher plate.Furthermore,the tilt angle of the vibrating screen should be adjusted to between 10 and 15 degrees,while the layout angle of the conveyor belt needs to be set at 16 degrees.The proposed manufactured sand grading model is feasible,and the pore diameter distribution inside concrete increases with an increase in the fineness modulus of manufactured sand.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.51901078)the Central Guidance for Local Scientific and Technological Development Funding Project(Grant No.236Z1003G)+3 种基金the Science and Technology Plan Project of Tangshan City(Grant No.24130207C)the Natural Science Foundation of Hebei Province(Grant No.E2022209070)the High-level Talent Project of Hebei(Grant No.E2019100007)the Open Project Program of Key Laboratory of Ministry of Education for Modern Metallurgy Technology(Grant No.2024YJKF02).
文摘This study systematically investigates the hot deformation behavior and microstructural evolution of CoNiV medium-entropy alloy(MEA)in the temperature range of 950-1100℃ and strain rates of 0.001-1 s^(-1).The Arrhenius model and machine learning model were developed to forecast flow stresses at various conditions.The predictive capability of both models was assessed using the coefficients of determination(R^(2)),average absolute relative error(AARE),and root mean square error(RMSE).The findings show that the osprey optimization algorithm convolutional neural network(OOA-CNN)model outperforms the Arrhenius model,achieving a high R^(2) value of 0.99959 and lower AARE and RMSE values.The flow stress that the OOA-CNN model predicted was used to generate power dissipation maps and instability maps under different strains.Finally,combining the processing map and microstructure characterization,the ideal processing domain was identified as 1100℃ at strain rates of 0.01-0.1 s^(-1).This study provided key insights into optimizing the hot working process of CoNiV MEA.
基金the National Key Research and Development Program of China(No.2016YFB0700505)the National Natural Science Foundation of China(No.51571020).
文摘The hot deformation behavior of GH3230 superalloy under selected deformation conditions ranging from 950 to 1150℃with strain rates ranging from 0.01 to 10 s^(–1)was studied through isothermal hot compression experiments.Based on the obtained flow stresses,a strain-compensated Arrhenius-type model was developed for the description of hot deformation behavior,and the consistency of the predicted flow stresses with the experimental values confirms the accuracy of the developed model.Furthermore,the processing maps were constructed and classified into the instability domain,low-dissipation stability domain and high-dissipation stability domain in accordance with the dynamic material model and the instability criterion.Microstructure observations indicated that the instability domain exhibits the adiabatic shear bands formation,and the low-power dissipation domain exhibits partial dynamic recrystallization(DRX),with the temperature increase/strain rate decrease being favorable for the DRX.The high-dissipation stability domain was occupied by uniformly fine equiaxed grains,and was identified as the optimal processing window,which corresponds to the deformation conditions at 1070–1150℃ with strain rates ranging from 0.01 to 0.15 s^(–1).Moreover,various DRX mechanisms are observed to occur during the hot deformation,which include the discontinuous dynamic recrystallization,characterized by nucleation at bulged boundaries,the continuous dynamic recrystallization with subgrain progressive rotation and the particle stimulated nucleation mechanism with stimulated nucleation of carbide particles.
基金Supported by Guangdong Major Project of Basic and Applied Research,China(Grant No.2019B030302010)National Natural Science Foundation of China (Grant Nos.51735003,52205456)
文摘Avoiding crystallization while maintaining the original microstructure and mechanical properties of the material are long-term goals of laser welding of Zr-based bulk metallic glass(BMG).In this paper,the effect of pulsed laser welding parameters on the microstructure,crystallization degree,and mechanical properties of Zr57Nb5Cu15.4Ni12.6Al10 BMG is investigated.Non-crystallized welding forming of a zirconium-based amorphous alloy is achieved by optimizing the process parameters of pulsed laser welding.The crystallization degree of Zr-based BMG is mainly determined by the welding speed and power.The welding depth and crystallization area fraction increase with an increase in the effective peak power density.The optimized welding process can effectively reduce the heat accumulation of the weld,thus avoiding crystallization.The flexural strength of the weld can be maintained at 96.5%of the matrix.
基金supported by the National Natural Science Foundation of China(No.51805265)the Fundamental Research Funds for the Central Universities,China(No.30922010921).
文摘Thin walls of an AZ91 magnesium alloy with fine equiaxed grains were fabricated via cold arc-based wire arc additive manufacturing(CA-WAAM),and the droplet transfer behaviours,microstructures,and mechanical properties were investigated.The results showed that the cold arc process reduced splashing at the moment of liquid bridge breakage and effectively shortened the droplet transfer period.The microstructures of the deposited samples exhibited layered characteristics with alternating distributions of coarse and fine grains.During layer-by-layer deposition,the β-phase precipitated and grew preferentially along grain boundaries,while the fineη-Al_(8)Mn_(5)phase was dispersed in the α-Mg matrix.The mechanical properties of the CA-WAAM deposited sample showed isotropic characteristics.The ultimate tensile strength and elongation in the building direction(BD)were 282.7 MPa and 14.2%,respectively.The microhardness values of the deposited parts were relatively uniform,with an average value of HV 69.6.
基金supported by National Natural Science Foundation of China(Grant Nos.5233500651975073)State Key Laboratory of Mechanical Transmission for Advanced Equipment(Grant No.SKLMT-MSKFKT-202104).
文摘Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via laser powder bed fusion(LPBF)to obtain high-performance aluminum alloys.To this end,process parameter optimization and heat treatment were adopted.The optimal process parameters were determined by initially analyzing the relative density and defect distribution under varying energy densities.The sample obtained under the optimal process parameters exhibited a relative density of 99.84%.Subsequently,the corresponding phase compositions,microstructures,and mechanical performance of the as-fabricated specimens were determined using the optimal process parameters before and after heat treatment.The microstructures of the samples showed typical equiaxed columnar bimodal grain structures,with Al_(3)(Sc,Zr)precipitates detected.The samples exhibited no significant anisotropy before and after heat treatment,while the grain orientation differences were dominated by high-angle grain boundaries.The mechanical properties of all the samples were characterized using tensile and hardness tests.The yield strength,ultimate tensile strength,and elongation of the sample were 475.0 MPa,508.2 MPa,and 8.3%,respectively.Overall,samples with high density,low porosity,high strength,and high plasticity were obtained by process parameter optimization and appropriate heat treatment.
基金financially supported by the European Coal and Steel Community(RFCS-2015.No.709828).
文摘The microstructure development of 55VNb1 microalloyed steel after warm deformation via multi-pass biaxial compression tests was studied,and the effect of thermomechanical conditions on spheroidisation of cementite lamellae and ferrite recrystallisation for a range of deformation temperatures(600–700℃),cooling/soaking time(water quenching,air cooling,10 and 30 min of soaking time)and interpass time(0–10 s)was analysed.During deformation,the spheroidisation of pearlite is dynamically accelerated mainly by boundary splitting mechanism together with the rapid dissolution of cementite,while ferrite softening is attributed to dynamic recovery and continuous dynamic recrystallisation.The strong microstructural evolution during cooling/soaking time indicates that deformation energy accumulated is sufficient to activate metallurgical phenomena in both phases also statically.Static spheroidisation is a diffusive process,with rate controlled by the diffusion of vacancies,as suggested by the estimated activation energy.Ferrite refinement is the result of the evolution of continuous recrystallisation and pinning effect exerted by fine,globulised and homogeneously dispersed cementite particles.Increasing temperature causes accelerated kinetics in metallurgical phenomena;therefore,cooling/soaking time becomes key parameters to achieve ultrafine grained and spheroidised microstructures.Interpass time favours spheroidisation and promotes continuous recrystallisation;however,it must be carefully controlled to find a balance between recrystallisation and Ostwald ripening to optimise microstructural development.
基金financially supported by Silesian University of Technology,Poland(No.11/030/BK_23/1127)V?B–Technical University of Ostrava Czech Republic(No.CZ.02.1.01/0.0/0.0/17_049/0008399)。
文摘The effects of forward extrusion as well as extrusion combined with reversible torsion(KoBo extrusion),followed by additional deformation via the MaxStrain module of the Gleeble thermomechanical simulator,on the microstructure,mechanical properties,and electrical conductivity of a Cu−0.7Mg(wt.%)alloy,were investigated.The simulation results highlighted the critical influence of processing history on determining the equivalent strain distribution.The sample subjected to forward extrusion at 400℃and subsequent MaxStrain processing(FM sample),possessed 76%lower grain size compared to the sample processed solely with MaxStrain(AM sample).Likewise,the KoBo-extruded and MaxStrain-processed sample(KM sample)exhibited 66%smaller grain size compared to the AM sample.Tensile test results revealed that the AM,FM,and KM samples,respectively,possessed 251%,288%,and 360%higher yield strength,and 95%,121%,and 169%higher tensile strength compared to the initial annealed alloy,as a result of grain refinement as well as deformation strengthening.Finally,the electrical conductivity measurements revealed that AM,FM,and KM samples,respectively,possessed electrical conductivity values of 37.9,35.6,and 32.0 MS/m,which,by considering their mechanical properties,makes them eligible to be categorized as high-strength and high-conductivity copper alloys.
文摘Additive manufacturing(AM)has revolutionized modern manufacturing,but the application of magnesium(Mg)alloys in laser-based AM remains underexplored due to challenges such as oxidation,low boiling point,and thermal expansion,which lead to defects like porosity and cracking.This study provides a comprehensive analysis of microstructure changes in WE43 magnesium(Mg)alloy after laser surface melting(LSM),examining grain morphology,orientation,size,microsegregation,and defects under various combinations of laser power,scan speed,and spot size.Ourfindings reveal that variations in laser power and spot size exert a more significant influence on the depth and aspect ratio of the keyhole melt pool compared to laser scan speed.Critically,we demonstrate that laser energy density,while widely used as a quantitative metric to describe the combined effects of process parameters,exhibits significant limitations.Notable variations in melt pool depth,normalized width,and microstructure with laser energy density were observed,as reflected by low R²values.Additionally,we underscore the importance of assessing the temperature gradient across the width of the melt pool,which determines whether conduction or keyhole melting modes dominate.These modes exhibit distinct heatflow mechanisms and yield fundamentally different microstructural outcomes.Furthermore,we show that the microstructure and grain size in conduction mode exhibit a good correlation with the temperature gradient(G)and solidification rate(R).This research provides a framework for achieving localized microstructural control in LSM,providing insights to optimize process parameters for laser-based 3D printing of Mg alloys,and advancing the integration of Mg alloys into AM technologies.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3706901,2022YFB3706903)the National Natural Science Foundation of China(No.52274382)。
文摘Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation behavior and microstructure evolution of millimeter-grade coarse grains(MCGs)in the as-cast Ti-6Cr-5Mo-5V-4Al(Ti-6554)alloy were studied,and a hot processing map was established.Under compression along the rolling direction(RD),continuous dynamic recrystallization(CDRX)ensues due to the progressive rotation of subgrains within the MCGs.Along the transverse direction(TD),discontinuous dynamic recrystallization(DDRX)resulting from grain boundary bulging or bridging,occurs on the boundaries of the MCGs.With decreasing strain rate,increasing temperature,and higher deformation degree,dynamic recrystallization becomes more pronounced,resulting in a reduction in the original average grain size.The optimal processing parameters fall within a temperature range of 1050-1150℃,a strain rate of 0.01 s^(-1),and a deformation degree between 40%and 60%.
基金supported by the National Natural Science Foundation of China(Nos.52401178 and U24A20713)the IMR Innovation Fund(No.2024-PY06)the CAS-WEGO Research and Development Plan Project.
文摘Ti-Zr-Cu alloy has garnered signifcant attention in the feld of dental implants due to its excellent biocompatibility,antibacterial properties,and potentially controllable mechanical properties.However,two critical challenges remain in the selective laser melting(SLM)fabrication of Ti-Zr-Cu alloy:First,the high thermal conductivity of the Cu element tends to destabilize the solidifcation behavior of the molten pool,leading to uncontrollable pore defect evolution;Second,the infuence of process parameters on the synergistic efects of zirconium solution strengthening and copper precipitation strengthening is not well understood,hindering precise control over the material's mechanical properties.To address these issues,this study systematically elucidates the quantitative impact of energy input on the defect formation mechanisms and strengthening efects in the SLM processing of Ti15Zr5Cu alloy.By optimizing laser power(120–200 W)and scanning speed(450–1200 mm/s)through a full-factor experimental design,we comprehensively analyze the efects of energy input on defect morphology,microstructure evolution,and mechanical performance.The results demonstrate that as energy density decreases,defect types transition from spherical pores to irregular pores,signifcantly infuencing mechanical properties.Based on the defect evolution trends,three distinct energy density regions are identifed:the high-energy region,the lowenergy region,and the transition region.Under the optimal processing conditions of a laser power of 180 W and a scanning speed of 1200 mm/s,the Ti15Zr5Cu alloy exhibits a relative density of 99.998%,a tensile strength of 1490±11 MPa,and an elongation at break of 6.0%±0.5%.These properties ensure that the material satisfes the stringent requirements for high strength in narrow-diameter implants used in the maxilloanterior region.This study provides theoretical and experimental support for the process-property optimization of Ti-Zr-Cu alloys in additive manufacturing and promotes their application in the fabrication of high-performance,antibacterial dental implants.
基金supported by the National Science and Technology Major Project(No.J2019-VI-0012-0126).
文摘The initial microstructure of titanium alloy in theα+βphase region is pivotal in dictating the performance of the final products after thermomechanical processing.Microstructures and textures of three rods,each prepared through distinct pretreatments,were systematically analyzed.Morphological analysis reveals that while both thickαplatelets and coarse priorβgrains impede the spheroidization of lamellar structures,the influence of the former is more pronounced.Variations inαplatelet thickness priorβgrain size exhibit limited impact on the macro-texture type after deformation and annealing.The proportion of low-angle interfaces between the c-axis of the primaryαphase and the<110>direction of the priorβgrains was elevated in rods with thicker platelets compared to thinner ones.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
基金supported by the National Key R&D Program of China(2020YFA0712901).
文摘We study age-structured branching models with reproduction law depending on the remaining lifetime of the parent. The lifespan of an individual is determined at its birth and its remaining lifetime decreases at the unit speed. The models, without or with immigration, are constructed as measure-valued processes by pathwise unique solutions of stochastic equations driven by time-space Poisson random measures. In the subcritical branching case, we give a sufficient condition for the ergodicity of the process with immigration. Two large number laws and a central limit theorem of the occupation times are proved.
基金financially supported by the National Natural Science Foundation of China(Nos.52425408 and 52304345)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)the Postdoctoral Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0174)。
文摘Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.
基金financial supports from the National Natural Science Foundation of China(52130104,51821001)High Technology and Key Development Project of Ningbo,China(2019B10102)。
文摘Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.