期刊文献+
共找到1,039,746篇文章
< 1 2 250 >
每页显示 20 50 100
Short-term silicone oil tamponade on retinal structure and function in rhegmatogenous retinal detachment:a randomized controlled trial
1
作者 Zi-Ye Chen Yu-Qing Wu +7 位作者 Bao-Yi Liu Yuan Ma Zhuang-Ling Lin Run-Ping Duan Lan Jiang Chinling Tsai Zhuo-Jun Xu Tao Li 《International Journal of Ophthalmology(English edition)》 2026年第1期83-89,共7页
AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal de... AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal detachment(RRD).METHODS:A total of 58 eligible patients were enrolled and randomly assigned to two groups based on tamponade duration:the short-term group(30-45d)and the conventional group(≥90d).Comprehensive evaluations were performed before and after SOR,including slitlamp examination,best-corrected visual acuity(BCVA)measurement,intraocular pressure(IOP)testing,optical coherence tomography(OCT),optical coherence tomography angiography(OCTA),microperimetry,electroretinography(ERG),and visual evoked potential(VEP)assessment.RESULTS:A total of 33 patients(23 males and 10 females;33 eyes)were enrolled in the short-term SO tamponade group with mean age of 52.45±9.35y,and 25 patients(15 males and 10 females;25 eyes)were enrolled in the conventional SO tamponade group with mean age of 50.80±12.06y.Compared with the conventional group,the short-term silicone oil tamponade group had a significantly lower incidence of silicone oil emulsification and cataract progression,with no significant difference in retinal reattachment success rate.Structurally,short-term tamponade was associated with increased thickness of the retinal ganglion cell layer(RGCL)in the nasal and superior macular regions and improved recovery of superficial retinal vascular density in these areas.Functionally,the shortterm group showed better BCVA and retinal sensitivity both before and 1mo after SOR;additionally,the P100 amplitude in VEP tests was significantly increased in this group.CONCLUSION:Shortening the duration of silicone oil tamponade effectively reduces damage to retinal structure and function without compromising the success rate of retinal reattachment in patients with primary RRD. 展开更多
关键词 silicone oil tamponade rhegmatogenous retinal detachment silicone oil removal retinal structure retinal function PROGNOSIS
原文传递
Crystal structure,thermal analysis,and luminescence properties of six heterocyclic lanthanide complexes
2
作者 SONG Zihe ZHAO Jinjin +1 位作者 REN Ning ZHANG Jianjun 《无机化学学报》 北大核心 2026年第1期181-192,共12页
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'... Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6. 展开更多
关键词 lanthanide complexes fluorescence property crystal structure thermal analysis
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
3
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
4
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
5
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Effects of SiO_(2)/Al_(2)O_(3)Ratios on Microstructure,Properties and Elastic Modulus of SiO_(2)-Al_(2)O_(3)-CaO-MgO Alkali-Free Glass
6
作者 DONG Peng TENG Zhou +3 位作者 XIE Jun ZHANG Jihong XIONG Dehua CHEN Dequan 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期45-53,共9页
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes... Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass. 展开更多
关键词 alkali free glass glass network structure VISCOSITY elastic modulus
原文传递
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
7
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
8
作者 Yu Fan Chunhui Wang +6 位作者 Hongmiao Tian Xiaoming Chen Ben QLi Zhaomin Wang Xiangming Li Xiaoliang Chen Jinyou Shao 《Nano-Micro Letters》 2026年第1期290-305,共16页
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p... Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality. 展开更多
关键词 Generative nanoimprinting Electric field assistance Tilted metasurface structures Large-area fabrication
在线阅读 下载PDF
Insights into microbial actions on hydraulic concrete structures:Effects of ammonia and sulfate on community structure,function and biofilm morphology
9
作者 Longfei Wang Wentao Zhuo +6 位作者 Tao He Zongyi Peng You Mou Minyue Wan Xinnan Pan Yi Li Zhengjian Yang 《Journal of Environmental Sciences》 2025年第11期430-442,共13页
Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated... Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures. 展开更多
关键词 Hydraulic concrete structures Community structure Nutrient levels functional prediction Microbial action
原文传递
Neuroplasticicity mechanism of acupuncture for pain-induced emotions: From function to structure
10
作者 Hong-yu LU Bao-jin WANG +2 位作者 Cui MA An-guo LIU Xing-ke YAN 《World Journal of Acupuncture-Moxibustion》 2025年第4期276-282,共7页
Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplas... Pain-induced emotions are the negative moods caused by pain,such as depression and anxiety.Acupunc-ture can effectively relieve pain-induced emotions,and its mechanism is closely related to the regulation of neuroplasticity.Neuroplasticity is composed of two types,functional neuroplasticity and structural neuroplasticity.(1)Acupuncture improves functional neuroplasticity by inhibiting the activation of mi-croglia and astrocytes,regulating the expression of neurotransmitters and receptors,modulating cellular signal transduction pathways,and optimizing synaptic transmission efficiency.(2)Acupuncture improves structural neuroplasticity by modulating neuronal synaptic plasticity,inhibiting neuronal apoptosis,and up-regulating the expression of the BDNF/TrKB/CREB signaling pathway.Additionally,acupuncture up-regulates the expression of brain-derived neurotrophic factors to improve both the functional and struc-tural neuroplasticity,thus relieves pain-induced emotions.The above discovery provides an approach to the mechanism research of acupuncture for pain-induced emotions. 展开更多
关键词 ACUPUNCTURE Pain-induced emotions NEUROPLASTICITY functional neuroplasticity structural neuroplasticity
原文传递
Ordered structures with Schottky heterojunction functional unit regulate immune response and osteogenesis
11
作者 Peng Yu Maofei Ran +7 位作者 Heying Ran Xuebin Yang Youzhun Fan Zhengao Wang Zhengnan Zhou Jinxia Zhai Zefeng Lin Chengyun Ning 《Journal of Materials Science & Technology》 2025年第10期276-287,共12页
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w... Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis. 展开更多
关键词 Ordered structures with functional unit MACROPHAGE Implant OSTEOGENESIS Electric microenvironment
原文传递
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
12
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
在线阅读 下载PDF
Structure-function insights of natural Ganoderma polysaccharides:advances in biosynthesis and functional food applications
13
作者 Zhou-Wei Wu Xue-Fang Zhao +5 位作者 Chen-Xi Quan Xiao-Cui Liu Xin-Yu Tao Yu-jie Li Xing-Rong Peng Ming-Hua Qiu 《Natural Products and Bioprospecting》 2025年第2期143-175,共33页
Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position G... Ganoderma polysaccharides(GPs),derived from various species of the Ganoderma genus,exhibit diverse bioactivities,including immune modulation,anti-tumor effects,and gut microbiota regulation.These properties position GPs as dual-purpose agents for medicinal and functional food development.This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action,such as TLR signaling in immune modulation,apoptosis pathways in anti-tumor activity,and their prebiotic effects on gut microbiota.Additionally,the structure-activity relationships(SARs)of GPs are highlighted to elucidate their biological efficacy.Advances in green extraction techniques,including ultrasonic-assisted and enzymatic methods,are discussed for their roles in enhancing yield and aligning with sustainable production principles.Furthermore,the review addresses biotechnological innovations in polysaccharide biosynthesis,improving production efficiency and making large-scale production feasible.These insights,combined with ongoing research into their bioactivity,provide a solid foundation for developing health-promoting functional food products that incorporate GPs.Furthermore,future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides. 展开更多
关键词 Ganoderma polysaccharides extraction techniques structural characteristics Bioactivity biosynthetic pathways functional food applications
在线阅读 下载PDF
Investigation of Near-Surface S-Wave Velocity Structure beneath the Epicenter and adjacent Area of the Jishishan Earthquake by using the Receiver Function
14
作者 Fan-chang Meng Ruo-ge Xu +2 位作者 Hui Sun Bo Li Yun Long 《Applied Geophysics》 2025年第3期647-659,893,共14页
Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structur... Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structure through teleseismic receiver function analysis by using the amplitude of direct P-wave.The results reveal that the epicentral area(Liugou Township and surroundings)exhibits markedly low S-wave velocities of 400-600 m/s,with a mean value of(500±50)m/s.In contrast,intermountain basins-Guanting Basin and Dahejia Basin-demonstrate significantly elevated velocities,exceeding the epicentral zone by 100-300 m/s,with values concentrated at 600-900 m/s.Notably,localized areas such as Jintian Village and Caotan Village maintain stable S-wave velocities of(700±30)m/s.The western margin tectonic belt of Jishishan displays distinctive velocity differentiation:A pronounced velocity gradient zone along the 35.8°N latitude boundary separates northern areas(<550 m/s)from southern regions(>750 m/s).These findings demonstrate significant spatial heterogeneity in shallow S-wave velocity structures,primarily controlled by three factors:(1)topographic-geomorphic units,(2)stratigraphic lithological contrasts,and(3)anthropogenic modifications.The persistent low-velocity anomalies(<600 m/s)in the epicentral zone and northern Yellow River T2 terrace likely correlate with Quaternary unconsolidated sediments,enhanced groundwater circulation,and bedrock weathering.These results provide critical geophysical constraints for understanding both the seismogenic environment of the Jishishan earthquake and its damage distribution patterns.Furthermore,they establish a foundational framework for regional seismic intensity evaluation,site amplification analysis,and secondary hazard risk assessment. 展开更多
关键词 Jishishan Earthquake Dense Seismic Array Receiver function S-Wave Velocity structure
在线阅读 下载PDF
Research progress on the structure and physiological functions of PKG
15
作者 Meng-Jie Peng Chao Li +1 位作者 Xiang-Xiang Zhang Xiao-Jun Han 《Biomedical Engineering Communications》 2025年第3期13-22,共10页
Protein Kinase G(PKG)is an important intracellular signal transduction enzyme,and its activity is modulated by cyclic guanosine monophosphate(cGMP).PKG plays a pivotal role in various significant physiological process... Protein Kinase G(PKG)is an important intracellular signal transduction enzyme,and its activity is modulated by cyclic guanosine monophosphate(cGMP).PKG plays a pivotal role in various significant physiological processes,including vascular smooth muscle relaxation,myocardial cell function regulation,neuron growth,and synaptic plasticity,et al.In recent years,the role of PKG in diseases has gradually attracted attention,and the abnormalities in its signaling pathway are closely related to the occurrence and development of cardiovascular and neurological diseases.Although PKG has been widely studied,its complex functions in different physiological systems and potential innovative applications still need to be further explored.This article reviews the purification techniques for PKG,discusses the advantages and disadvantages of different extraction methods,summarizes the structure and activation mechanism of each domain of PKG,and analyzes the physiological functions of PKG in organisms,especially the well-established roles in the cardiovascular system,nervous system,and endocrine system.The emerging therapeutic applications of PKG are also reviewed.In addition,the challenges of this field are proposed at the end. 展开更多
关键词 protein kinase G plasmid expression technology structural domain activation mechanism physiological function
在线阅读 下载PDF
Stable crystal structure prediction using machine learning-based formation energy and empirical potential function
16
作者 Lu Li Jianing Shen +4 位作者 Qinkun Xiao Chaozheng He Jinzhou Zheng Chaoqin Chu Chen Chen 《Chinese Chemical Letters》 2025年第11期563-568,共6页
Crystal structure prediction aims to predict stable and easily experimentally synthesized materials,which accelerates the discovery of new materials.It is worth noting that the stability of materials is the basis for ... Crystal structure prediction aims to predict stable and easily experimentally synthesized materials,which accelerates the discovery of new materials.It is worth noting that the stability of materials is the basis for ensuring high performance and reliable application of materials.Among which,the thermodynamic and molecular dynamics stability is especially important.Therefore,this paper proposes a method to predict stable crystal structures using formation energy and Lennard-Jones potential as evaluation indicators.Specifically,we use graph neural network models to predict the formation energy of crystals,and employ empirical formulas to calculate the Lennard-Jones potential.Then,we apply Bayesian optimization algorithms to search for crystal structures with low formation energy and Lennard-Jones potential approaching zero,in order to ensure the thermodynamic stability and dynamics stability of materials.In addition,considering the impact of the bonding situation between atoms in the crystal on the structural stability,this article uses contact map to analyze the atomic bonding situation of each crystal to screen out more stable materials.Finally,the experimental results show that the method we proposed can not only reduce the time for crystal structure prediction,but also ensure the stability of crystal materials. 展开更多
关键词 Crystal structure prediction Machine learning Formation energy Empirical potential function Thermodynamic stability Dynamics stability
原文传递
Microstructure and Properties of Fe-Mo Functionally Graded Materials Fabricated by Electron Beam-Directional Energy Deposition
17
作者 Li Danni Yao Zhengjun +6 位作者 Yao Mengxin Zhang Shuxian Moliar Oleksandr Soloviova Tetiana Trosnikova Iryna Loboda Petro Zhang Shasha 《稀有金属材料与工程》 北大核心 2025年第3期554-568,共15页
Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy depositio... Fe-Mo functionally graded materials(FGMs)with different composition-change rates from 100%304 stainless steel to 100%Mo along the composition gradient direction were prepared by electron beam-directed energy deposition(EB-DED)technique,including three samples with composition mutation of 100%,composition change rate of 10%and 30%.Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples.In the sample with abrupt change of composition,the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials.With the increase in the number of gradient layers,the composition changes continuously along the direction of deposition height,and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo,which is gradually transformed from columnar crystal to dendritic crystal.Elements Fe,Mo,and other major elements transform linearly along the gradient direction,with sufficient interlayer diffusion between the deposited layers,leading to good metallurgical bonding.The smaller the change in composition gradient,the greater the microhardness value along the deposition direction.When the composition gradient is 10%,the gradient layer exhibits higher hardness(940 HV)and excellent resistance to surface abrasion,and the overall compressive properties of the samples are better,with the compressive fracture stress in the top region reaching 750.05±14 MPa. 展开更多
关键词 functionally graded materials EB-DED microstructure evolution mechanical properties
原文传递
Advanced Computational Modeling and Mechanical Behavior Analysis of Multi-Directional Functionally Graded Nanostructures:A Comprehensive Review
18
作者 Akash Kumar Gartia S.Chakraverty 《Computer Modeling in Engineering & Sciences》 2025年第3期2405-2455,共51页
This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functio... This review explores multi-directional functionally graded(MDFG)nanostructures,focusing on their material characteristics,modeling approaches,and mechanical behavior.It starts by classifying different types of functionally graded(FG)materials such as conventional,axial,bi-directional,and tri-directional,and the material distribution models like power-law,exponential,trigonometric,polynomial functions,etc.It also discusses the application of advanced size-dependent theories like Eringen’s nonlocal elasticity,nonlocal strain gradient,modified couple stress,and consistent couple stress theories,which are essential to predict the behavior of structures at small scales.The review covers the mechanical analysis of MDFG nanostructures in nanobeams,nanopipes,nanoplates,and nanoshells and their dynamic and static responses under different loading conditions.The effect of multi-directional material gradation on stiffness,stability and vibration is discussed.Moreover,the review highlights the need for more advanced analytical,semi-analytical,and numerical methods to solve the complex vibration problems ofMDFG nanostructures.It is evident that the continued development of these methods is crucial for the design,optimization,and real-world application of MDFG nanostructures in advanced engineering fields like aerospace,biomedicine,and micro/nanoelectromechanical systems(MEMS/NEMS).This study is a reference for researchers and engineers working in the domain of MDFG nanostructures. 展开更多
关键词 functionally graded multi-directional nano SIZE-DEPENDENT VIBRATION
在线阅读 下载PDF
A review for design,mechanism,fabrication,and application of magnetically responsive microstructured functional surface
19
作者 Jian Wang Xingyi Song +8 位作者 Chaochao Wang Yumei Zhou Ri Chen Yong Yang Bin Liu Yihao Zheng Hui Li Wei Zhou Lelun Jiang 《International Journal of Extreme Manufacturing》 2025年第1期96-128,共33页
Magnetically responsive microstructured functional surface(MRMFS),capable of dynamically and reversibly switching the surface topography under magnetic actuation,provides a wireless,noninvasive,and instantaneous way t... Magnetically responsive microstructured functional surface(MRMFS),capable of dynamically and reversibly switching the surface topography under magnetic actuation,provides a wireless,noninvasive,and instantaneous way to accurately control the microscale engineered surface.In the last decade,many studies have been conducted to design and optimize MRMFSs for diverse applications,and significant progress has been accomplished.This review comprehensively presents recent advancements and the potential prospects in MRMFSs.We first classify MRMFSs into one-dimensional linear array MRMFSs,two-dimensional planar array MRMFSs,and dynamic self-assembly MRMFSs based on their morphology.Subsequently,an overview of three deformation mechanisms,including magnetically actuated bending deformation,magnetically driven rotational deformation,and magnetically induced self-assembly deformation,are provided.Four main fabrication strategies employed to create MRMFSs are summarized,including replica molding,magnetization-induced self-assembly,laser cutting,and ferrofluid-infused method.Furthermore,the applications of MRMFS in droplet manipulation,solid transport,information encryption,light manipulation,triboelectric nanogenerators,and soft robotics are presented.Finally,the challenges that limit the practical applications of MRMFSs are discussed,and the future development of MRMFSs is proposed. 展开更多
关键词 functional surfaces MICROstructureS magnetic actuation MANIPULATION
在线阅读 下载PDF
Response of Soil Microbial Community Structure and Function to Anaerobic Digestion Cow Slurry Application in Northeast Black Soil of China
20
作者 Yang Xiaohan Huang Shuo +7 位作者 Teng Song Sun Yiwen Wang Wenxin Yang Shuting Liu Zhenghao Liu Xuesheng Wang Chunhong Jiang Baiwen 《Journal of Northeast Agricultural University(English Edition)》 2025年第4期30-47,共18页
Manure slurry application to farmland reduces chemical fertilizer use,mitigates pollution,and improves soil fertility.However,researches on the role of anaerobically treated cow slurry applied to soil microorganisms i... Manure slurry application to farmland reduces chemical fertilizer use,mitigates pollution,and improves soil fertility.However,researches on the role of anaerobically treated cow slurry applied to soil microorganisms in Northeast China remain underexplored.Here,in laboratory incubation experiments,different treatments including various combinations of sterilized and non-sterilized soil and slurry,and different application rates were employed to examine the effects of indigenous microorganisms on soil microbial communities.Field-collected soil samples were employed to examine the responses and spatial variations of soil microbes under production conditions.The results indicated that indigenous soil microorganisms exerted a dominant influence in the microbial community variations,while the impact of cow slurry microbiota on community diversity was relatively minor.At the phylum level,Proteobacteria(P=0.031,R=0.969)showed a significant positive correlation with the slurry application,whereas Acidobacteriota(P=0.012,R=–0.988)and Basidiomycota(P=0.01,R=–0.99)showed significant negative correlations.In the field environment,the autumn slurry application effects on soil microbes in the following year were not significant.In contrast,under spring slurry application,the cow slurry-soil agglomerations led to significant spatial differences in soil microbial communities,with higher microbial diversity observed in the vicinity of agglomerations.The microbes in agglomerations,such as Actinomycetes,Bacteroides and Proteobacteria,were found to be beneficial for the crop residue decomposition.These microorganisms could decompose organic compounds including lignin,cellulose,hemicellulose,and xylan in crop straw.Overall,slurry application indeed influenced soil microbes and induced spatial variations,providing insights for sustainable agricultural practices. 展开更多
关键词 anaerobic fermentation MANURE AGGLOMERATION diversity microbial structure
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部