Utilizing a BzK-selecfion technique, we obtain 14 550 star-forming galaxies (sBzKs) and 1763 passive galaxies (pBzKs) at z - 2 from the K-selected (KAB 〈 22.5) catalog in the COSMOS/UltraVISTA field. The differ...Utilizing a BzK-selecfion technique, we obtain 14 550 star-forming galaxies (sBzKs) and 1763 passive galaxies (pBzKs) at z - 2 from the K-selected (KAB 〈 22.5) catalog in the COSMOS/UltraVISTA field. The differential number counts of sBzKs and pBzKs are consistent with the results from the literature. Compared to the observed results, semi-analytic models of galaxy formation and evolution provide too few (many) galaxies at the high (low) mass end. Moreover, we find that the star formation rate and stellar mass of sBzKs follow the relation of the main sequence. Based on HST/Wide Field Camera 3 F160W imaging, we find a wide range of morphological diversities for sBzKs, from diffuse to early-type spiral structures, with relatively high M20, large size and low G, while pBzKs have elliptical-like compact morphologies with lower M20, smaller size and higher G, indicating a more concentrated and symmetric spatial extent of stellar population distribution in pBzKs than sBzKs. Furthermore, the sizes of pBzKs (sBzKs) at z - 2 are on average two to three (one to two) times smaller than those of local early-type (late-type) galaxies with similar stellar mass. Our findings imply that the two classes have different evolution models and mass assembly histories.展开更多
We investigated the relationship between the accretion process and jet properties by utilizing very long baseline array (VLBA) and mid-infrared (MIR) data for a sample of 45 3CRR radio galaxies selected with a flu...We investigated the relationship between the accretion process and jet properties by utilizing very long baseline array (VLBA) and mid-infrared (MIR) data for a sample of 45 3CRR radio galaxies selected with a flux density at 178MHz 〉 16.4Jy, 5 GHz very large array (VLA) core flux density ≥7 mJy and MIR observations. The pc-scale radio structure at 5 GHz is presented by using our VLBA observations for 21 sources acquired in February, 2016, the analysis of archival data for 16 objects and directly obtaining measurements for eight radio galaxies available from literatures. The accretion mode is constrained from the Eddington ratio with a dividing value of 0.01, which is estimated from the MIR-based bolometric luminosity and the black hole masses. While most Fanaroff-Riley type II radio galaxies (FRIIs) have higher Eddington ratio than Fanaroff-Riley type I radio galaxies (FRIs), we found that there is indeed no single correspondence between the FR morphology and accretion mode with eight FRIIs at low accretion rate and two FRIs at high accretion rate. There is a significant correlation between the VLBA core luminosity at 5 GHz and the Eddington ratio. Various morphologies are identi- fied in our sample, including core only, single-sided core-jet and two-sided core-jet structures. We found that the higher accretion rate may be more likely related with the core-jet structure, thus generating a more extended jet. These results imply that the higher accretion rates are likely able to produce more powerful jets. There is a strong correlation between the MIR luminosity at 15 ktm and VLBA 5 GHz core luminosity, in favor of the tight relation between the accretion disk and jets. In our sample, the core brightness temperature ranges from 109 to 101338 K with a median value of 10^11.09K, indicating that systematically the beaming effect may not be significant. The exceptional cases, FRIs at high accretion rates and FRIIs at low accretion rates, are exclusively at the high and low ends, respectively, of the distribution of the flux ratio for VLBA core to 178 MHz flux density. It is not impossible that the locations of these sources are due to the recent shining or weakening of their central engines (i.e., both accretion and jet).展开更多
The star-forming clumps in star-bursting dwarf galaxies provide valuable insights into understanding the evolution of dwarf galaxies.In this paper,we focus on five star-bursting dwarf galaxies featuring off-centered c...The star-forming clumps in star-bursting dwarf galaxies provide valuable insights into understanding the evolution of dwarf galaxies.In this paper,we focus on five star-bursting dwarf galaxies featuring off-centered clumps in the Mapping Nearby Galaxies at Apache Point Observatory survey.Using the stellar population synthesis software Fitting Analysis using Differential evolution Optimization,we obtain the spatially resolved distribution of the star formation history,which allows us to construct the g-band images of the five galaxies at different ages.These images can help us to probe the evolution of the morphological structures of these galaxies.While images of a stellar population older than 1 Gyr are typically smooth,images of a stellar population younger than 1 Gyr reveal significant clumps,including multiple clumps which appear at different locations and even different ages.To study the evolutionary connections of these five galaxies to other dwarf galaxies before their star-forming clumps appear,we construct the images of the stellar populations older than three age nodes,and define them to be the images of the"host"galaxies.We find that the properties such as the central surface brightness and the effective radii of the hosts of the five galaxies are in between those of dwarf ellipticals(dEs)and dwarf irregulars(dIrrs),with two clearly more similar to dEs and one more similar to dIrrs.Among the five galaxies,8257-3704 is particularly interesting,as it shows a previous starburst event that is not quite visible from its gri image,but only visible from images of the stellar population at a few hundred million years.The star-forming clump associated with this event may have appeared at around 600 Myr ago and disappeared at around 40 Myr ago.展开更多
We study the vertical distribution of the highly inclined galaxies from the Continuum Halos in Nearby Galaxies—an EVLA Survey(CHANG-ES).We explore the feasibility of photometrically deriving the HⅠdisk scale heights...We study the vertical distribution of the highly inclined galaxies from the Continuum Halos in Nearby Galaxies—an EVLA Survey(CHANG-ES).We explore the feasibility of photometrically deriving the HⅠdisk scale heights from the moment-0 images of the relatively edge-on galaxies with inclination>80°,by quantifying the systematic broadening effects and thus deriving correction equations for direct measurements.The corrected HⅠdisk scale heights of the relatively edge-on galaxies from the CHANG-ES sample show trends consistent with the quasiequilibrium model of the vertical structure of gas disks.The procedure provides a convenient way to derive the scale heights and can easily be applied to statistical samples in the future.展开更多
Recent observations of Dwarf Satellite Galaxies (DSG) show that they have a clear tendency to stay in particular planes. Explanations with standard physics remain controversial. Recently, I proposed a new explanation ...Recent observations of Dwarf Satellite Galaxies (DSG) show that they have a clear tendency to stay in particular planes. Explanations with standard physics remain controversial. Recently, I proposed a new explanation of the galactic flat rotation curves, introducing a new cosmic acceleration due to expansion. In this paper, I apply this new acceleration to the dynamics of DSG’s (without dark matter). I show that this new acceleration implies planar structures for the DSG trajectories. More generally, it is shown that this acceleration produces a space structuration around any massive center. It remains a candidate to explain several cosmic observations without dark matter.展开更多
A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is poss...A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as energy of the universe <i>U</i>, cosmological constant <i>E</i><sub>Λ</sub>, curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λ<i>e</i></sub>, age of the universe <i>t</i><sub>Ω</sub> (part 1). That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses (part 2). Indeed, such residual, non-baryonic energy, when considered in Newton’s gravity equation, adds the term <i>F</i><sub>Λ</sub>(<i>r</i>), which can partially explain, without recourse to dark matter, the rotations of some galaxies, such as M33, UGC12591, UGC2885, NGC3198, NGC253, DDO161, UDG44, the MW and the Coma cluster. Today, in the MW, that cosmological gravity force is in the order of 10<sup>26</sup> times smaller than the conventional gravity force. The model predicts an acceleration of the mass in the universe (<i>q</i>~-0.986);the energy associated with curvature <i>E<sub>k</sub></i> is the driving force behind the expansion of the universe, rather than the energy associated with the cosmological constant <i>E</i><sub>Λ</sub>. An equation to determine expansion is obtained using the energy form of the Friedmann equation relative to Planck power <i>P<sub>P</sub></i> and cosmic time or Planck force <i>F<sub>P</sub></i> acting at the frontier of the universe moving at <i>c</i>. This constant Planck force, from unknown sources, acts everywhere to the expansion of the universe as a stretching effect on the volume. Finally, the model partly explains the value a<sub>0</sub> of the MOND theory. Indeed, <i>a</i><sub>0</sub> is not a true constant, but depends on the cosmological constant at the time the great structures were formed (~1 [Gy]), as well as an adjustment of the typical mass and dimension of those great structures, such as galaxies. The constant a<sub>0</sub> is a different expression of the cosmological gravity force <i>F</i><sub>Λ</sub> as expressed by the cosmological constant, Λ, acting through the energy-mass equivalent during the formation of the structures. It does not put in question the value of <i>G</i>.展开更多
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tool...Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat- tened parallel to the orientations of red luminous galaxies with axis ratios of -0.5 and ,-0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60 h^-1 Mpc.展开更多
On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface b...On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface brightness distributions from observed images. As examples, the non-edge-on spiral galaxies PGC 24996, which is face-on, and M31, which is inclined, are studied. The scale height, pitch angle and inclination angle of M31, our nearest neighbor, that are presented in this work, agree well with previous research.展开更多
A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is poss...A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub> (part 1). The age of the universe in cosmic time that is in line with positive energy conservation (in terms of conventional thermodynamics) and the creation of proton, neutron, electron, and neutrino masses, is ~76 [Gy] (observed <img src="Edit_6d0b63d7-3b06-4a39-97c8-a0004319d14d.png" width="15" height="15" alt="" /> ~ 70 [km · s<sup>-1</sup> · Mpc<sup>-1</sup>]). In this model, what is usually referred to as dark energy actually corresponds to the energy of the universe that has not been converted to mass, and which acts on the mass created by the energy-mass equivalence principle and the cosmological gravity field, F<sub>Λ</sub>, associated with the cosmological constant, which is high during the primordial formation of the galaxies (<1 [Gy]). A look at the Casimir effect makes it possible to estimate a minimum Casimir pressure <i>P<sub>c</sub></i><sup>0</sup> and thus determine our possible relative position in the universe at cosmic time 0.1813 (<i>t</i><sub>0</sub>/<i>t</i><sub>Ω</sub> = 13.8[Gy]/76.1[Gy]). Therefore, from the observed age of 13.8 [Gy], we can derive a possible cosmic age of ~76.1 [Gy]. That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses.展开更多
The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star ...The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star formation at z> 1.In this paper,we study the lifetimes of X-ray active galactic nuclei(AGNs) in UV-selected red sequence(RS),blue cloud(BC) and green valley(GV) galaxies,finding that AGN accretion activities are most prominent in GV galaxies at z ~1.5-2,compared with RS and BC galaxies.We also compare AGN accretion timescales with typical color transition timescales of UV-selected galaxies.We find that the lifetime of GV galaxies at z~1.5-2 is very close to the typical timescale when the AGNs residing in them stay in the high-accretion-rate mode at these redshifts;for BC galaxies,the consistency between the color transition timescale and the black hole strong accretion lifetime is more likely to happen at lower redshifts(z <1).Our results support the scenario where AGN accretion activities govern UV color transitions of host galaxies,making galaxies and their central SMBHs coevolve with each other.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Through the analysis of representative samples of field galaxies,both local(z~0.027)and distant(z~0.7),we explore the barred galaxy fraction and its dependence on stellar mass,color,and morphology,aiming to understand...Through the analysis of representative samples of field galaxies,both local(z~0.027)and distant(z~0.7),we explore the barred galaxy fraction and its dependence on stellar mass,color,and morphology,aiming to understand the evolution of these structural components through cosmic time.To this end,two complementary bar detection techniques were employed:elliptical isophote fitting and two-dimensional Fourier analysis,both applied to deep optical images.The observational samples were drawn from previously established and calibrated catalogs to ensure a homogeneous selection in stellar mass,enabling a robust comparison between local galaxies(z~0.027)and those in the distant Universe(z~0.7).This study systematically applies both isophotal fitting and Fourier decomposition across a wide redshift range,offering a comprehensive view of the evolution of bar incidence as a function of stellar mass and morphology.The results indicate that the fraction of barred galaxies is significantly higher in the local Universe than at earlier epochs,particularly among spiral galaxies.Furthermore,a clear correlation is observed between the presence of bars and stellar mass,especially in the high-mass regime(log(M_*/M☉)>10.5).In distant galaxies,this fraction is lower across all mass ranges,which may be related to more active dynamical processes.Overall,the findings reinforce the idea that stellar bars emerge as a consequence of dynamical cooling and the progressive stabilization of galactic disks,playing a key role in gas transport and the internal structural evolution of galaxies from z~1 to the present day.展开更多
Using a semi-analytic approach,we estimate halo spins for a large sample of H I-rich galaxies from the Arecibo Legacy Fast ALFA Survey and examine the correlation between H I mass fractions and halo spins.Our analysis...Using a semi-analytic approach,we estimate halo spins for a large sample of H I-rich galaxies from the Arecibo Legacy Fast ALFA Survey and examine the correlation between H I mass fractions and halo spins.Our analysis reveals a strong correlation between halo spin and the H I-to-stellar mass ratio in both low-mass and massive galaxy samples.This finding suggests a universal formation scenario:higher halo spin reduces angular momentum loss and gas condensation,leading to lower star formation rates and weaker feedback,which in turn help retain gas within dark matter halos.展开更多
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes...Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.展开更多
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g...To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal de...AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal detachment(RRD).METHODS:A total of 58 eligible patients were enrolled and randomly assigned to two groups based on tamponade duration:the short-term group(30-45d)and the conventional group(≥90d).Comprehensive evaluations were performed before and after SOR,including slitlamp examination,best-corrected visual acuity(BCVA)measurement,intraocular pressure(IOP)testing,optical coherence tomography(OCT),optical coherence tomography angiography(OCTA),microperimetry,electroretinography(ERG),and visual evoked potential(VEP)assessment.RESULTS:A total of 33 patients(23 males and 10 females;33 eyes)were enrolled in the short-term SO tamponade group with mean age of 52.45±9.35y,and 25 patients(15 males and 10 females;25 eyes)were enrolled in the conventional SO tamponade group with mean age of 50.80±12.06y.Compared with the conventional group,the short-term silicone oil tamponade group had a significantly lower incidence of silicone oil emulsification and cataract progression,with no significant difference in retinal reattachment success rate.Structurally,short-term tamponade was associated with increased thickness of the retinal ganglion cell layer(RGCL)in the nasal and superior macular regions and improved recovery of superficial retinal vascular density in these areas.Functionally,the shortterm group showed better BCVA and retinal sensitivity both before and 1mo after SOR;additionally,the P100 amplitude in VEP tests was significantly increased in this group.CONCLUSION:Shortening the duration of silicone oil tamponade effectively reduces damage to retinal structure and function without compromising the success rate of retinal reattachment in patients with primary RRD.展开更多
We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the opt...We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).展开更多
We present the morphological study of 18,572 massive quiescent galaxies at z~1.2, selected by i-y colors in the Hyper Suprime-Cam(HSC) Deep and UltraDeep fields. The majority of our sample(94.3%) fall in the quiescent...We present the morphological study of 18,572 massive quiescent galaxies at z~1.2, selected by i-y colors in the Hyper Suprime-Cam(HSC) Deep and UltraDeep fields. The majority of our sample(94.3%) fall in the quiescent region in the rest-frame UVJ diagram. Comparing the five HSC bands and the subsample with HST F160W images, consistent with the decreasing effective radius re, Sérsic index n shows an increasing trend indicating a more bulge-dominant morphology towards the infrared. Even for our massive, quiescent galaxies,which are dominated by typical elliptical galaxies with bulges, the reand n values still vary with the wavelengths.For instance, there is a systematic drop in n of ~0.4 going from y band to F160W, making 20% of the HSC “disklike” galaxies appear “bulge-like” in the HST images. We suggest to use caution when comparing galaxy morphological types based on images at different resolutions or at different wavelengths, and whenever possible,to apply a reor n correction. More massive quiescent galaxies are systematically larger than the less massive ones,though no mass dependence is found for n measurements. The size–mass relation based on our sample and lowerz control samples show a monotonic increase of rewith M*, with a power-law of 0.61 ± 0.01, lower than previously found in similar samples of smaller sizes. Future high-resolution space-based surveys like NGRST will help confirm the possible n evolution, and if the flattening at the low-mass end is a genuine physical trend or limited by the image resolutions.展开更多
Leveraging the semi-analytic method,we compute halo spins for a substantial sample of H I-bearing galaxies observed in the Arecibo Legacy Fast ALFA Survey.Our statistical analysis reveals a correlation between halo sp...Leveraging the semi-analytic method,we compute halo spins for a substantial sample of H I-bearing galaxies observed in the Arecibo Legacy Fast ALFA Survey.Our statistical analysis reveals a correlation between halo spin and environment,although the trend is subtle.On average,galaxies exhibit a decreasing halo spin tendency in denser environments.This observation contrasts with previous results from N-body simulations in the Lambda Cold Dark Matter framework.The discrepancy may be attributed to environmental gas stripping,leading to an underestimation of halo spins in galaxies in denser environments,or to baryonic processes that significantly alter the original dark matter halo spins,deviating from previous N-body simulation findings.展开更多
基金Supported by the National Natural Science Foundation of China
文摘Utilizing a BzK-selecfion technique, we obtain 14 550 star-forming galaxies (sBzKs) and 1763 passive galaxies (pBzKs) at z - 2 from the K-selected (KAB 〈 22.5) catalog in the COSMOS/UltraVISTA field. The differential number counts of sBzKs and pBzKs are consistent with the results from the literature. Compared to the observed results, semi-analytic models of galaxy formation and evolution provide too few (many) galaxies at the high (low) mass end. Moreover, we find that the star formation rate and stellar mass of sBzKs follow the relation of the main sequence. Based on HST/Wide Field Camera 3 F160W imaging, we find a wide range of morphological diversities for sBzKs, from diffuse to early-type spiral structures, with relatively high M20, large size and low G, while pBzKs have elliptical-like compact morphologies with lower M20, smaller size and higher G, indicating a more concentrated and symmetric spatial extent of stellar population distribution in pBzKs than sBzKs. Furthermore, the sizes of pBzKs (sBzKs) at z - 2 are on average two to three (one to two) times smaller than those of local early-type (late-type) galaxies with similar stellar mass. Our findings imply that the two classes have different evolution models and mass assembly histories.
基金supported by the National Natural Science Foundation of China(Grant Nos.11473054,U1531245,11763002 and 11590784)
文摘We investigated the relationship between the accretion process and jet properties by utilizing very long baseline array (VLBA) and mid-infrared (MIR) data for a sample of 45 3CRR radio galaxies selected with a flux density at 178MHz 〉 16.4Jy, 5 GHz very large array (VLA) core flux density ≥7 mJy and MIR observations. The pc-scale radio structure at 5 GHz is presented by using our VLBA observations for 21 sources acquired in February, 2016, the analysis of archival data for 16 objects and directly obtaining measurements for eight radio galaxies available from literatures. The accretion mode is constrained from the Eddington ratio with a dividing value of 0.01, which is estimated from the MIR-based bolometric luminosity and the black hole masses. While most Fanaroff-Riley type II radio galaxies (FRIIs) have higher Eddington ratio than Fanaroff-Riley type I radio galaxies (FRIs), we found that there is indeed no single correspondence between the FR morphology and accretion mode with eight FRIIs at low accretion rate and two FRIs at high accretion rate. There is a significant correlation between the VLBA core luminosity at 5 GHz and the Eddington ratio. Various morphologies are identi- fied in our sample, including core only, single-sided core-jet and two-sided core-jet structures. We found that the higher accretion rate may be more likely related with the core-jet structure, thus generating a more extended jet. These results imply that the higher accretion rates are likely able to produce more powerful jets. There is a strong correlation between the MIR luminosity at 15 ktm and VLBA 5 GHz core luminosity, in favor of the tight relation between the accretion disk and jets. In our sample, the core brightness temperature ranges from 109 to 101338 K with a median value of 10^11.09K, indicating that systematically the beaming effect may not be significant. The exceptional cases, FRIs at high accretion rates and FRIIs at low accretion rates, are exclusively at the high and low ends, respectively, of the distribution of the flux ratio for VLBA core to 178 MHz flux density. It is not impossible that the locations of these sources are due to the recent shining or weakening of their central engines (i.e., both accretion and jet).
基金supported by National Key R&D Program of China(Nos.2019YFA0405501 and 2022YFF0503402)the National Natural Science Foundation of China(NSFC,Nos.12233005 and 12041302)+6 种基金support from the Natural Science Foundation of Shanghai(Project Number:22ZR1473000)the Program of Shanghai Academic Research Leader(No.22XD1404200)supports from the CAS Pioneer Hundred Talents ProgramUSTC Research Funds of the Double First-Class Initiativethe NSFC grant 12273037the NSFC grants 12033004,12333003support from the NSFC through grants 12273091 and U2031139。
文摘The star-forming clumps in star-bursting dwarf galaxies provide valuable insights into understanding the evolution of dwarf galaxies.In this paper,we focus on five star-bursting dwarf galaxies featuring off-centered clumps in the Mapping Nearby Galaxies at Apache Point Observatory survey.Using the stellar population synthesis software Fitting Analysis using Differential evolution Optimization,we obtain the spatially resolved distribution of the star formation history,which allows us to construct the g-band images of the five galaxies at different ages.These images can help us to probe the evolution of the morphological structures of these galaxies.While images of a stellar population older than 1 Gyr are typically smooth,images of a stellar population younger than 1 Gyr reveal significant clumps,including multiple clumps which appear at different locations and even different ages.To study the evolutionary connections of these five galaxies to other dwarf galaxies before their star-forming clumps appear,we construct the images of the stellar populations older than three age nodes,and define them to be the images of the"host"galaxies.We find that the properties such as the central surface brightness and the effective radii of the hosts of the five galaxies are in between those of dwarf ellipticals(dEs)and dwarf irregulars(dIrrs),with two clearly more similar to dEs and one more similar to dIrrs.Among the five galaxies,8257-3704 is particularly interesting,as it shows a previous starburst event that is not quite visible from its gri image,but only visible from images of the stellar population at a few hundred million years.The star-forming clump associated with this event may have appeared at around 600 Myr ago and disappeared at around 40 Myr ago.
基金the National Natural Science Foundation of China(NSFC,Grant Nos.12073002 and 11721303)the High-performance Computing Platform of Peking University。
文摘We study the vertical distribution of the highly inclined galaxies from the Continuum Halos in Nearby Galaxies—an EVLA Survey(CHANG-ES).We explore the feasibility of photometrically deriving the HⅠdisk scale heights from the moment-0 images of the relatively edge-on galaxies with inclination>80°,by quantifying the systematic broadening effects and thus deriving correction equations for direct measurements.The corrected HⅠdisk scale heights of the relatively edge-on galaxies from the CHANG-ES sample show trends consistent with the quasiequilibrium model of the vertical structure of gas disks.The procedure provides a convenient way to derive the scale heights and can easily be applied to statistical samples in the future.
文摘Recent observations of Dwarf Satellite Galaxies (DSG) show that they have a clear tendency to stay in particular planes. Explanations with standard physics remain controversial. Recently, I proposed a new explanation of the galactic flat rotation curves, introducing a new cosmic acceleration due to expansion. In this paper, I apply this new acceleration to the dynamics of DSG’s (without dark matter). I show that this new acceleration implies planar structures for the DSG trajectories. More generally, it is shown that this acceleration produces a space structuration around any massive center. It remains a candidate to explain several cosmic observations without dark matter.
文摘A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as energy of the universe <i>U</i>, cosmological constant <i>E</i><sub>Λ</sub>, curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λ<i>e</i></sub>, age of the universe <i>t</i><sub>Ω</sub> (part 1). That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses (part 2). Indeed, such residual, non-baryonic energy, when considered in Newton’s gravity equation, adds the term <i>F</i><sub>Λ</sub>(<i>r</i>), which can partially explain, without recourse to dark matter, the rotations of some galaxies, such as M33, UGC12591, UGC2885, NGC3198, NGC253, DDO161, UDG44, the MW and the Coma cluster. Today, in the MW, that cosmological gravity force is in the order of 10<sup>26</sup> times smaller than the conventional gravity force. The model predicts an acceleration of the mass in the universe (<i>q</i>~-0.986);the energy associated with curvature <i>E<sub>k</sub></i> is the driving force behind the expansion of the universe, rather than the energy associated with the cosmological constant <i>E</i><sub>Λ</sub>. An equation to determine expansion is obtained using the energy form of the Friedmann equation relative to Planck power <i>P<sub>P</sub></i> and cosmic time or Planck force <i>F<sub>P</sub></i> acting at the frontier of the universe moving at <i>c</i>. This constant Planck force, from unknown sources, acts everywhere to the expansion of the universe as a stretching effect on the volume. Finally, the model partly explains the value a<sub>0</sub> of the MOND theory. Indeed, <i>a</i><sub>0</sub> is not a true constant, but depends on the cosmological constant at the time the great structures were formed (~1 [Gy]), as well as an adjustment of the typical mass and dimension of those great structures, such as galaxies. The constant a<sub>0</sub> is a different expression of the cosmological gravity force <i>F</i><sub>Λ</sub> as expressed by the cosmological constant, Λ, acting through the energy-mass equivalent during the formation of the structures. It does not put in question the value of <i>G</i>.
基金supported by NSFC (Nos. 10533030, 10821302,10878001)the Knowledge Innovation Program of CAS (No. KJCX2-YW-T05)by 973 Program(No. 2007CB815402).
文摘Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat- tened parallel to the orientations of red luminous galaxies with axis ratios of -0.5 and ,-0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60 h^-1 Mpc.
基金Supported by the National Natural Science Foundation of China
文摘On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface brightness distributions from observed images. As examples, the non-edge-on spiral galaxies PGC 24996, which is face-on, and M31, which is inclined, are studied. The scale height, pitch angle and inclination angle of M31, our nearest neighbor, that are presented in this work, agree well with previous research.
文摘A cosmological model was developed using the equation of state of photon gas, as well as cosmic time. The primary objective of this model is to see if determining the observed rotation speed of galactic matter is possible, without using dark matter (halo) as a parameter. To do so, a numerical application of the evolution of variables in accordance with cosmic time and a new state equation was developed to determine precise, realistic values for a number of cosmological parameters, such as the energy of the universe <i>U</i>, cosmological constant Λ, the curvature of space <i>k</i>, energy density <i>ρ</i><sub>Λe</sub> (part 1). The age of the universe in cosmic time that is in line with positive energy conservation (in terms of conventional thermodynamics) and the creation of proton, neutron, electron, and neutrino masses, is ~76 [Gy] (observed <img src="Edit_6d0b63d7-3b06-4a39-97c8-a0004319d14d.png" width="15" height="15" alt="" /> ~ 70 [km · s<sup>-1</sup> · Mpc<sup>-1</sup>]). In this model, what is usually referred to as dark energy actually corresponds to the energy of the universe that has not been converted to mass, and which acts on the mass created by the energy-mass equivalence principle and the cosmological gravity field, F<sub>Λ</sub>, associated with the cosmological constant, which is high during the primordial formation of the galaxies (<1 [Gy]). A look at the Casimir effect makes it possible to estimate a minimum Casimir pressure <i>P<sub>c</sub></i><sup>0</sup> and thus determine our possible relative position in the universe at cosmic time 0.1813 (<i>t</i><sub>0</sub>/<i>t</i><sub>Ω</sub> = 13.8[Gy]/76.1[Gy]). Therefore, from the observed age of 13.8 [Gy], we can derive a possible cosmic age of ~76.1 [Gy]. That energy of the universe, when taken into consideration during the formation of the first galaxies (<1 [Gy]), provides a relatively adequate explanation of the non-Keplerian rotation of galactic masses.
基金support from the National Natural Science Foundation of China (grant Nos. 12025303, 11890693,11421303 and 12003031)the CAS Frontier Science Key Research Program (QYZDJ-SSW-SLH006)+2 种基金the K.C. Wong Education Foundationthe science research grants from the China Manned Space Project with No. CMS-CSST-2021-A06support from the Chinese Academy of Sciences President’s International Fellowship Initiative (grant No. 2019PM0020)。
文摘The coevolution between supermassive black holes(SMBHs) and their host galaxies has been proposed for more than a decade,albeit with little direct evidence about black hole accretion activities regulating galaxy star formation at z> 1.In this paper,we study the lifetimes of X-ray active galactic nuclei(AGNs) in UV-selected red sequence(RS),blue cloud(BC) and green valley(GV) galaxies,finding that AGN accretion activities are most prominent in GV galaxies at z ~1.5-2,compared with RS and BC galaxies.We also compare AGN accretion timescales with typical color transition timescales of UV-selected galaxies.We find that the lifetime of GV galaxies at z~1.5-2 is very close to the typical timescale when the AGNs residing in them stay in the high-accretion-rate mode at these redshifts;for BC galaxies,the consistency between the color transition timescale and the black hole strong accretion lifetime is more likely to happen at lower redshifts(z <1).Our results support the scenario where AGN accretion activities govern UV color transitions of host galaxies,making galaxies and their central SMBHs coevolve with each other.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金financial support from the Secretaría Nacional de Ciencia,Tecnologia e Innovacion(SENACYT),through the Departamento de Fortalecimiento a los Posgrados Nacionalesthe coordination of the program"MOVILIDAD DE INVESTIGACION."+3 种基金the financial support provided by PAPIIT projects IN108323 and IN111825 from DGAPA-UNAMsupport from the Agencia Nacional de Investigación y Desarrollo(ANID)through Basal project FB210003FONDECYT Regular projects 1241426 and 123044Millennium Science Initiative Program NCN2024_112。
文摘Through the analysis of representative samples of field galaxies,both local(z~0.027)and distant(z~0.7),we explore the barred galaxy fraction and its dependence on stellar mass,color,and morphology,aiming to understand the evolution of these structural components through cosmic time.To this end,two complementary bar detection techniques were employed:elliptical isophote fitting and two-dimensional Fourier analysis,both applied to deep optical images.The observational samples were drawn from previously established and calibrated catalogs to ensure a homogeneous selection in stellar mass,enabling a robust comparison between local galaxies(z~0.027)and those in the distant Universe(z~0.7).This study systematically applies both isophotal fitting and Fourier decomposition across a wide redshift range,offering a comprehensive view of the evolution of bar incidence as a function of stellar mass and morphology.The results indicate that the fraction of barred galaxies is significantly higher in the local Universe than at earlier epochs,particularly among spiral galaxies.Furthermore,a clear correlation is observed between the presence of bars and stellar mass,especially in the high-mass regime(log(M_*/M☉)>10.5).In distant galaxies,this fraction is lower across all mass ranges,which may be related to more active dynamical processes.Overall,the findings reinforce the idea that stellar bars emerge as a consequence of dynamical cooling and the progressive stabilization of galactic disks,playing a key role in gas transport and the internal structural evolution of galaxies from z~1 to the present day.
基金support from the National Natural Science Foundation of China(NSFC)grant 12273037the CAS Pioneer Hundred Talents Program(Category B)+1 种基金the USTC Research Funds of the Double First-Class Initiativesupported by the China Manned Space Program with grant No.CMS-CSST-2025-A06 and CMS-CSST-2025-A08.
文摘Using a semi-analytic approach,we estimate halo spins for a large sample of H I-rich galaxies from the Arecibo Legacy Fast ALFA Survey and examine the correlation between H I mass fractions and halo spins.Our analysis reveals a strong correlation between halo spin and the H I-to-stellar mass ratio in both low-mass and massive galaxy samples.This finding suggests a universal formation scenario:higher halo spin reduces angular momentum loss and gas condensation,leading to lower star formation rates and weaker feedback,which in turn help retain gas within dark matter halos.
基金Supported by the National Key Research Program(No.2024-1129-954-112)National Natural Science Foundation of China(No.52372033)Guangxi Science and Technology Major Program(No.AA24263054)。
文摘Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.
基金Funded by the National Natural Science Foundation of China(Nos.5226804252468035)。
文摘To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金Supported by the Key Science&Technology Project of Guangzhou(No.202103000045)the National Natural Science Foundation of China(No.82070972,No.82271093).
文摘AIM:To investigate the effects of shortening the duration of silicone oil tamponade on retinal structure and function in patients undergoing silicone oil removal(SOR)after surgery for primary rhegmatogenous retinal detachment(RRD).METHODS:A total of 58 eligible patients were enrolled and randomly assigned to two groups based on tamponade duration:the short-term group(30-45d)and the conventional group(≥90d).Comprehensive evaluations were performed before and after SOR,including slitlamp examination,best-corrected visual acuity(BCVA)measurement,intraocular pressure(IOP)testing,optical coherence tomography(OCT),optical coherence tomography angiography(OCTA),microperimetry,electroretinography(ERG),and visual evoked potential(VEP)assessment.RESULTS:A total of 33 patients(23 males and 10 females;33 eyes)were enrolled in the short-term SO tamponade group with mean age of 52.45±9.35y,and 25 patients(15 males and 10 females;25 eyes)were enrolled in the conventional SO tamponade group with mean age of 50.80±12.06y.Compared with the conventional group,the short-term silicone oil tamponade group had a significantly lower incidence of silicone oil emulsification and cataract progression,with no significant difference in retinal reattachment success rate.Structurally,short-term tamponade was associated with increased thickness of the retinal ganglion cell layer(RGCL)in the nasal and superior macular regions and improved recovery of superficial retinal vascular density in these areas.Functionally,the shortterm group showed better BCVA and retinal sensitivity both before and 1mo after SOR;additionally,the P100 amplitude in VEP tests was significantly increased in this group.CONCLUSION:Shortening the duration of silicone oil tamponade effectively reduces damage to retinal structure and function without compromising the success rate of retinal reattachment in patients with primary RRD.
基金supported by the National Natural Science Foundation of China(NSFC)No.11873055 and No.11933003sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)+4 种基金support from project PID2020-114414GB-100,financed by MCIN/AEI/10.13039/501100011033the Junta de Andaluciaía(Spain)grant FQM108support by the National Key R&D Program of China No.2017YFA0402600the National Natural Science Foundation of China(NSFC)grant Nos.11890692,12133008,and 12221003China Manned Space Project No.CMS-CSST2021-A04。
文摘We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).
基金sponsored by the National Key R&D Program of China(MOST)with grant No.2022YFA1605300the National Natural Science Foundation of China(NSFC,grant Nos.12273051 and 11933003)Support for this work is also partly provided by the Chinese Academy of Sciences(CAS)through a grant to the South America Center for Astronomy(CASSACA)。
文摘We present the morphological study of 18,572 massive quiescent galaxies at z~1.2, selected by i-y colors in the Hyper Suprime-Cam(HSC) Deep and UltraDeep fields. The majority of our sample(94.3%) fall in the quiescent region in the rest-frame UVJ diagram. Comparing the five HSC bands and the subsample with HST F160W images, consistent with the decreasing effective radius re, Sérsic index n shows an increasing trend indicating a more bulge-dominant morphology towards the infrared. Even for our massive, quiescent galaxies,which are dominated by typical elliptical galaxies with bulges, the reand n values still vary with the wavelengths.For instance, there is a systematic drop in n of ~0.4 going from y band to F160W, making 20% of the HSC “disklike” galaxies appear “bulge-like” in the HST images. We suggest to use caution when comparing galaxy morphological types based on images at different resolutions or at different wavelengths, and whenever possible,to apply a reor n correction. More massive quiescent galaxies are systematically larger than the less massive ones,though no mass dependence is found for n measurements. The size–mass relation based on our sample and lowerz control samples show a monotonic increase of rewith M*, with a power-law of 0.61 ± 0.01, lower than previously found in similar samples of smaller sizes. Future high-resolution space-based surveys like NGRST will help confirm the possible n evolution, and if the flattening at the low-mass end is a genuine physical trend or limited by the image resolutions.
基金supports from the CAS Pioneer Hundred Talents Program(Category B)the National Natural Science Foundation of China(NSFC,grant No.12273037)the USTC Research Funds of the Double First-Class Initiative。
文摘Leveraging the semi-analytic method,we compute halo spins for a substantial sample of H I-bearing galaxies observed in the Arecibo Legacy Fast ALFA Survey.Our statistical analysis reveals a correlation between halo spin and environment,although the trend is subtle.On average,galaxies exhibit a decreasing halo spin tendency in denser environments.This observation contrasts with previous results from N-body simulations in the Lambda Cold Dark Matter framework.The discrepancy may be attributed to environmental gas stripping,leading to an underestimation of halo spins in galaxies in denser environments,or to baryonic processes that significantly alter the original dark matter halo spins,deviating from previous N-body simulation findings.