Understanding the nature of liquid structures and properties has always been a hot field in condensed matter physics and metallic materials science.The liquid is not homogeneous and the local structures inside change ...Understanding the nature of liquid structures and properties has always been a hot field in condensed matter physics and metallic materials science.The liquid is not homogeneous and the local structures inside change discontinuously with temperature,pressure,etc.The liquid will experience liquid−liquid structure transition under a certain condition.Liquid−liquid structure transition widely exists in many metals and alloys and plays an important role in the final microstructure and the properties of the solid alloys.This work provides a comprehensive review on this unique structure transition in the metallic liquid together with the recent progress of its impact on the following microstructure and properties after solidification.These effects are discussed by integrating them into different experimental results and theoretical considerations.The application of liquid−liquid structure transition as a strategy to tailor the properties of metals and alloys is proven to be practical and efficient.展开更多
Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chai...Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chain. The phase transition at T_(c2)(34℃)is related to the change of a partial conformational order-disorder. The GTC or GTG' and small concentration of TG structure near CH_3 group exist in phase Ⅲ (above 38℃).展开更多
A structure transition of Fe2O3 nanocrystal was studied by using DTA and TG thermal analysis and X-ray diffraction method. We found that size increase of the nanocrystals is larger after the structure transition than ...A structure transition of Fe2O3 nanocrystal was studied by using DTA and TG thermal analysis and X-ray diffraction method. We found that size increase of the nanocrystals is larger after the structure transition than that before the transition. It means that the structure transition is beneficial on growth of nanocrystals展开更多
The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
Distinct from molecular machines with frustrated dynamics,infinite framework assemblies are anticipated to behave with amplified and even synergistic performances in versatile application fields by performing their fu...Distinct from molecular machines with frustrated dynamics,infinite framework assemblies are anticipated to behave with amplified and even synergistic performances in versatile application fields by performing their functionalities in a coherent fashion.This work reports an interconverted crystalline Pd/Zr-SDC and amorphous Pd/Zr-SDC-Br metal–organic framework(MOF)system through dynamic bromination/debromination processes.In the upgrading of biomass-derived vanillin,Pd/Zr-SDC produces vanillyl alcohol intermediate via the hydrogenation route while Pd/Zr-SDC-Br switches to 2-methoxy-4-methylphenol via an alternative hydrodeoxygenation route.More significantly,quasi-crystalline Pd/Zr-SDC-Br50%intermediate through controlled debromination is further optimized for vanillin catalysis with an excellent turnover frequency of 717 h^(−1)and a high 2-methoxy-4-methylphenol selectivity up to 99.2%under very mild conditions.Both experiments and density functional theory calculation results jointly reveal that the remarkably boosted catalytic performances are attributed to the appropriate coverage of PdBr2 onto Pd nanoparticles during the dynamic debromination transitions.This work inspires guidance in designing and developing excellent MOF catalysts via dynamical structure intertransitions.展开更多
Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport pr...Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport properties,magnetic transition,and crystal structure by measuring resistivity,DC and AC magnetic susceptibility,and XRD under various pressures up to~20 GPa.Our results confirmed the occurrence of pressure-induced structural transition at P_(c)≈10–12 GPa accompanied by a concurrent drop of room-temperature resistance in Mn_(3)Si_(2)Te_(6).In the low-pressure phase at PP_(c),the sample exhibits a metallic behavior in the whole temperature range and its resistivity exhibits a kink anomaly at T_(M),characteristic of critical scattering around a magnetic transition.Recovery of the Raman spectrum upon decompression indicated that pressure-induced structural transition is reversible without amorphization under hydrostatic pressure conditions.Our present work not only resolves some existing controversial issues but also provides new insights into pressure-driven diverse behaviors of Mn_(3)Si_(2)Te_(6).展开更多
In this work,a morphology transition mode is revealed in ultra-high molecular weight polyethylene(UHMWPE)when stretching at 120℃:moving from the slightly deformed region to the necked region,the morphology transfers ...In this work,a morphology transition mode is revealed in ultra-high molecular weight polyethylene(UHMWPE)when stretching at 120℃:moving from the slightly deformed region to the necked region,the morphology transfers from small spherulites to a mixture of transcrystalline and enlarged spherulites,and finally to pure transcrystalline;meanwhile,the lamellae making up the transcrystalline or spherulite were fragmented into smaller ones;spatial scan by wide-angle X-ray scattering(WAXS)and small angle X-ray scattering(SAXS)revealed that the crystallinity is increased from 25.3%to 30.1%and the crystal orientation was enhanced greatly,but the lamellae orientation was quite weak.The rise of enlarged spherulites or a mixture of transcrystalline and spherulites can also be found in UHMWPE stretched at 140 and 148℃,whereas absent in UHMWPE stretched at 30℃.In situ WAXS/SAXS measurements suggest that during stretching at 30℃,the crystallinity is reduced drastically,and a few voids are formed as the size increases from 50 nm to 210 nm;during stretching at 120℃,the crystallinity is reduced only slightly,and the kinking of lamellae occurs at large Hencky strain;during stretching at 140 and 148℃,an increase in crystallinity with stretching strain can be found,and the lamellae are also kinked.Taking the microstructure and morphology transition into consideration,a mesoscale morphology transition mode is proposed,in the stretching-induced crystallization the fragmented lamellae can be rearranged into new supra-structures such as spherulite or transcrystalline during hot stretching.展开更多
The influence of ordered structure on the dislocation configuration,structure of anti-phase domain boundary,partial dislocation slips,etc.are analyzed in the background of promoting the plasticity of iron based ordere...The influence of ordered structure on the dislocation configuration,structure of anti-phase domain boundary,partial dislocation slips,etc.are analyzed in the background of promoting the plasticity of iron based ordered solid solutions with second-order phase transformation.The principles of deformation softening and annealing hardening in ordered solid solutions are discussed because of deformation induced structure disordering.It is concluded that the independent slip ability of the partial dislocations and the corresponding low temperature plasticity of ordered solid solutions could be promoted obviously by proper alloying effects,which reduces the anti-phase domain boundary energy,or by maintaining the disordering state into the low temperature range.The similar principles could be also used to modify the low temperature plasticity of other metal based ordered solid solutions.展开更多
The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to invest...The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.展开更多
Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of s...Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-Tc superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe2Pn2 (Pn = P, As, Sb) or FeeCh2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the Ko.sFe1.6+xSe2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed.展开更多
A new phase transition compound,2-methoxyanilinium perchlorate-18-crown-6(1) {(oCH3OC6H4NH3)+(18-crown-6) ClO4 },has been synthesized and separated as crystals.Differential scanning calorimetry(DSC) measureme...A new phase transition compound,2-methoxyanilinium perchlorate-18-crown-6(1) {(oCH3OC6H4NH3)+(18-crown-6) ClO4 },has been synthesized and separated as crystals.Differential scanning calorimetry(DSC) measurements show a pair of sharp peaks at 225 K(heating) and 210 K(cooling),indicating the phase transition is first-order.Dielectric anomalies observed at 225 K(heating)and 210 K(cooling) further confirm the phase transition.The crystal structures determined at 298 K and123 K are both triclinic in P 1.The most distinct difference between room-temperature and lowtemperature structures is the order–disorder transition of the host 18-crown-6 molecule,which is the driving force of the phase transition.展开更多
The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, a...The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.展开更多
In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-lo...In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-loop reference trajectory and the actual process.In the upper layer,the variant time scale based control vector parametric methods(VTS-CVP) was used for dynamic optimization of transition reference trajectory,while nonlinear model predictive controller(NMPC) based on closed-loop subspace and piece-wise linear(SSARX-PWL) model in the lower layer was tracking to the reference trajectory from the upper layer for overcoming high-frequency disturbances.Besides,mechanism about trajectory deviation detection and optimal trajectory updating online were introduced to ensure a smooth transition for the entire process.The proposed method was validated with the real data from an industrial double-loop propylene polymerization reaction process with developed dynamic mechanism mathematical model.展开更多
The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-...The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-VSe2 and 1T-VSe2, monolayer H-VSe2 and T-VSe2 are all demonstrated as thermodynamically stable by lattice dynamic calculations. More interestingly, the phase transition temperature is dramatically different due to the lattice size. Finally, owing to different crystal structures, H-VSe2 is semimetallic whereas T-VSe2 is totally metallic and also they have different magnetic moments. Our main argument is that being exfoliated from bulk to monolayer, 2H-VSe2 transforms to T-VSe2, accompanied by both semimetallic-metallic transition and dramatic magnetic moment variation. Our calculations provide a novel structure phase transition and an efficient way to modulate the electronic structure and magnetic moment of layered VSe2, which suggests potential applications as high-performance functional nanomaterial.展开更多
With transition metal complex, a discrete cuprous iodide compound, namely, [Ni(phen)3]2Cu6I10(1, phen = 1,10-phenanthroline) has been solvothermally synthesized and structurally characterized. Single-crystal X-ray...With transition metal complex, a discrete cuprous iodide compound, namely, [Ni(phen)3]2Cu6I10(1, phen = 1,10-phenanthroline) has been solvothermally synthesized and structurally characterized. Single-crystal X-ray diffraction studies revealed that compound 1 crystallizes in triclinic space group P1(No. 2) with a = 11.2694(2), b = 12.3699(3), c = 15.0387(3) ?, α = 102.840(2), β = 105.215(2), γ = 96.388(2)°, V = 1940.04(7) ^3, Z = 1, Dc = 2.438 g·cm^-3, F(000) = 1324, R = 0.0256 and w R = 0.0555(I 〉 2σ(I)). Compound 1 features a discrete anionic moiety of [Cu6I10]^4- charge-balanced by two metal complexes of [Ni(phen)3]2+. The optical absorption edge of compound 1 was estimated to be 2.24 eV. Interestingly, nearly 95% of contaminant(crystal violet aqueous solution(CV), 50 m L, 1.0 × 10^-5 M) could be decolorized after exposure to visible light within 30 min, illustrating an impressive photocatalytic activity of compound 1. The thermal stability of 1 has also been studied.展开更多
Shape-induced phase transition of vortex domain structures (VDSs) in BaTiO3 (BT) nanodots under open circuit boundary condition have been investigated using an effective Hamiltonian method. Our calculation indicat...Shape-induced phase transition of vortex domain structures (VDSs) in BaTiO3 (BT) nanodots under open circuit boundary condition have been investigated using an effective Hamiltonian method. Our calculation indicates the tetragonal VDS missing in cubic BT nanodots can be induced by varying the shape of a nanodot from cube to platelet. Interestingly, a novel VDS is found in BT nanoplatelets in our simulations. Further investigation shows that it is a result of compromise between the ground state and the symmetry of the shape of the nanodot. Furthermore, based on the novel VDS, routes of controlling VDSs governed by homogeneous electric field and uniform stress are discussed. In particular, our results show the possibility of designing multi-states devices based on a single VDS. ~ 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.展开更多
The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-...The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-xCoxFe2-xGdxO4 prepared by the citrate-nitrate auto-combustion synthesis was investigated.Characterization of the samples was performed with powder X-ray diffraction(XRD),Raman and Fouriertransform infrared(FTIR)spectroscopy,field-emission scanning electron microscopy,X-ray energydispersive spectroscopy,UV-Vis spectroscopy,and a vibrating sample magnetometer.The results of XRD,Raman,and FTIR analysis show a gradual structural phase transition from a tetragonal(I41/amd)structure to a cubic(Fd3m)structure.The bandgap energy of the studied samples is in a range of 1.57-1.75 eV with a minimum in sample x=0.06 and then increases.Magnetic investigations show that the presence of Co^(2+)/Gd^(3+)cations in an octahedral site of the copper ferrite structure could increase saturation magnetization and coercive field from 567.9 Oe and 23.62 emu/g to 929.4 Oe and 28.27 emu/g,respectively.展开更多
The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been su...The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been successfully fabricated via phase transition engineering.However,the understanding of structural phase transition ofβ-Sn(001)thin films is still elusive.Here,we report the direct growth of ultrathinβ-Sn(001)films epitaxially on the highly oriented pyrolytic graphite(HOPG)substrate and the characterization of intricate structural-transition-induced superstructures.The morphology was obtained by using atomic force microscopy(AFM)and low-temperature scanning tunneling microscopy(STM),indicating a structure-related bilayer-by-bilayer growth mode.The ultrathinβ-Sn film was made of multiple domains with various superstructures.Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains.The formation mechanism of these superstructures was further discussed based on the structural phase transition ofβtoα-Sn at the atomic-scale thickness.Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit,but also paves a way to investigate their structure-sensitive topological properties.展开更多
Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)str...Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.展开更多
Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-trea...Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-treated samples, we obtain the following results: the first endothermic peak corresponds to the desorption of physical or chemical absorption, the second one is related to the structural phase transition from brookite to anatase then to rutile, and this structural phase transition is beneficial to the grain growth of nanocrystal展开更多
基金Project(51690164)supported by the National Natural Science Foundation of ChinaProject(2019-TS-04)supported by the State Key Laboratory of Solidification Processing,China。
文摘Understanding the nature of liquid structures and properties has always been a hot field in condensed matter physics and metallic materials science.The liquid is not homogeneous and the local structures inside change discontinuously with temperature,pressure,etc.The liquid will experience liquid−liquid structure transition under a certain condition.Liquid−liquid structure transition widely exists in many metals and alloys and plays an important role in the final microstructure and the properties of the solid alloys.This work provides a comprehensive review on this unique structure transition in the metallic liquid together with the recent progress of its impact on the following microstructure and properties after solidification.These effects are discussed by integrating them into different experimental results and theoretical considerations.The application of liquid−liquid structure transition as a strategy to tailor the properties of metals and alloys is proven to be practical and efficient.
文摘Infrared spectra of (n-C_9H_(19)NH_3)_2CuCl_4 in three solid phases were investigated. It was found that the phase transition at T_(cl)(25℃) arises from the change of the interaction and packing structure of the chain. The phase transition at T_(c2)(34℃)is related to the change of a partial conformational order-disorder. The GTC or GTG' and small concentration of TG structure near CH_3 group exist in phase Ⅲ (above 38℃).
文摘A structure transition of Fe2O3 nanocrystal was studied by using DTA and TG thermal analysis and X-ray diffraction method. We found that size increase of the nanocrystals is larger after the structure transition than that before the transition. It means that the structure transition is beneficial on growth of nanocrystals
文摘The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
基金supported by the National Natural Science Foundation of China(grant nos.21905195 and 22103055)Natural Science Foundation of Tianjin City(grant no.20JCYBJC00800)+2 种基金Science and Technology Plans of Tianjin(grant no.21ZYJDJC00050)PEIYANG Young Scholars Program of Tianjin University(grant no.2020XRX-0023)Wenzhou Key Laboratory of Biomaterials and Engineering(grant no.WIUCASSWCL21005).
文摘Distinct from molecular machines with frustrated dynamics,infinite framework assemblies are anticipated to behave with amplified and even synergistic performances in versatile application fields by performing their functionalities in a coherent fashion.This work reports an interconverted crystalline Pd/Zr-SDC and amorphous Pd/Zr-SDC-Br metal–organic framework(MOF)system through dynamic bromination/debromination processes.In the upgrading of biomass-derived vanillin,Pd/Zr-SDC produces vanillyl alcohol intermediate via the hydrogenation route while Pd/Zr-SDC-Br switches to 2-methoxy-4-methylphenol via an alternative hydrodeoxygenation route.More significantly,quasi-crystalline Pd/Zr-SDC-Br50%intermediate through controlled debromination is further optimized for vanillin catalysis with an excellent turnover frequency of 717 h^(−1)and a high 2-methoxy-4-methylphenol selectivity up to 99.2%under very mild conditions.Both experiments and density functional theory calculation results jointly reveal that the remarkably boosted catalytic performances are attributed to the appropriate coverage of PdBr2 onto Pd nanoparticles during the dynamic debromination transitions.This work inspires guidance in designing and developing excellent MOF catalysts via dynamical structure intertransitions.
基金supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406100, 2022YFA1403900, 2024YFA1408400, 2021YFA1400200, 2022YFA1403800, and 2023YFA1406500)the National Natural Science Foundation of China (Grant Nos. 12174424, 12025408, 11921004, U22A6005, and 12274459)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2023007)the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2024PG0003)。
文摘Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport properties,magnetic transition,and crystal structure by measuring resistivity,DC and AC magnetic susceptibility,and XRD under various pressures up to~20 GPa.Our results confirmed the occurrence of pressure-induced structural transition at P_(c)≈10–12 GPa accompanied by a concurrent drop of room-temperature resistance in Mn_(3)Si_(2)Te_(6).In the low-pressure phase at PP_(c),the sample exhibits a metallic behavior in the whole temperature range and its resistivity exhibits a kink anomaly at T_(M),characteristic of critical scattering around a magnetic transition.Recovery of the Raman spectrum upon decompression indicated that pressure-induced structural transition is reversible without amorphization under hydrostatic pressure conditions.Our present work not only resolves some existing controversial issues but also provides new insights into pressure-driven diverse behaviors of Mn_(3)Si_(2)Te_(6).
基金supported by the National Natural Science Foundation of China(Nos.52003249,12072325 and 52273027)the Natural Science Foundation of Henan(No.242300421236).
文摘In this work,a morphology transition mode is revealed in ultra-high molecular weight polyethylene(UHMWPE)when stretching at 120℃:moving from the slightly deformed region to the necked region,the morphology transfers from small spherulites to a mixture of transcrystalline and enlarged spherulites,and finally to pure transcrystalline;meanwhile,the lamellae making up the transcrystalline or spherulite were fragmented into smaller ones;spatial scan by wide-angle X-ray scattering(WAXS)and small angle X-ray scattering(SAXS)revealed that the crystallinity is increased from 25.3%to 30.1%and the crystal orientation was enhanced greatly,but the lamellae orientation was quite weak.The rise of enlarged spherulites or a mixture of transcrystalline and spherulites can also be found in UHMWPE stretched at 140 and 148℃,whereas absent in UHMWPE stretched at 30℃.In situ WAXS/SAXS measurements suggest that during stretching at 30℃,the crystallinity is reduced drastically,and a few voids are formed as the size increases from 50 nm to 210 nm;during stretching at 120℃,the crystallinity is reduced only slightly,and the kinking of lamellae occurs at large Hencky strain;during stretching at 140 and 148℃,an increase in crystallinity with stretching strain can be found,and the lamellae are also kinked.Taking the microstructure and morphology transition into consideration,a mesoscale morphology transition mode is proposed,in the stretching-induced crystallization the fragmented lamellae can be rearranged into new supra-structures such as spherulite or transcrystalline during hot stretching.
基金supported by the Independent Research Project of the State Key Laboratory for Advanced Metals and Materials (Grant No. 2010z-12)
文摘The influence of ordered structure on the dislocation configuration,structure of anti-phase domain boundary,partial dislocation slips,etc.are analyzed in the background of promoting the plasticity of iron based ordered solid solutions with second-order phase transformation.The principles of deformation softening and annealing hardening in ordered solid solutions are discussed because of deformation induced structure disordering.It is concluded that the independent slip ability of the partial dislocations and the corresponding low temperature plasticity of ordered solid solutions could be promoted obviously by proper alloying effects,which reduces the anti-phase domain boundary energy,or by maintaining the disordering state into the low temperature range.The similar principles could be also used to modify the low temperature plasticity of other metal based ordered solid solutions.
基金Projects(51701061,51705129) supported by the National Natural Science Foundation of ChinaProject(17391001D) supported by the Department of Science and Technology of Hebei Province,ChinaProject(2017-Z02) supported by the State Key Lab of Advanced Metals and Materials,China
文摘The Al0.3CoCrFeNi high-entropy alloy(HEA)particles reinforced Cu matrix composites(CMCs)were fabricated by mechanical alloying and sintering.Transition layer structure was obtained by multi-step ball milling to investigate the related influence on element diffusion behavior and wear properties of CMCs.The results indicate that a new Cu transition layer is generated,and the thickness is about 5μm.Cr element diffuses into the interface via the transition layer,which forms the complex oxide.Because of the structure of Cu transition layer,the diffusion rates of Ni,Co and Fe increase,especially the Ni element.The wear resistance of CMCs is improved by 30%,which is due to the improvement of interface bonding strength,compared with the CMCs without transition layer.This method is applicable to the development of advanced HEA reinforced metallic matrix composites.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00101,2010CB923002,2011CB921703,and2012CB821404)the National Natural Science Foundation of China(Grant Nos.11274368,51272277,11074292,11004229,and11190022)the Chinese Academy of Sciences
文摘Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-Tc superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe2Pn2 (Pn = P, As, Sb) or FeeCh2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the Ko.sFe1.6+xSe2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed.
基金supported by the National Natural Science Foundation of China (No. 21101025)
文摘A new phase transition compound,2-methoxyanilinium perchlorate-18-crown-6(1) {(oCH3OC6H4NH3)+(18-crown-6) ClO4 },has been synthesized and separated as crystals.Differential scanning calorimetry(DSC) measurements show a pair of sharp peaks at 225 K(heating) and 210 K(cooling),indicating the phase transition is first-order.Dielectric anomalies observed at 225 K(heating)and 210 K(cooling) further confirm the phase transition.The crystal structures determined at 298 K and123 K are both triclinic in P 1.The most distinct difference between room-temperature and lowtemperature structures is the order–disorder transition of the host 18-crown-6 molecule,which is the driving force of the phase transition.
基金Supported by the National Natural Science Foundation of China under Grant No 11404180the Natural Science Foundation of Heilongjiang Province under Grant Nos F201335,A2015010,and A2015011the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province under Grant No LBH-Q14159
文摘The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.
基金Supported by the Electronic Information Industry Development Foundation of China(20140806)the National Natural Science Foundation of China(61374121,61134007)
文摘In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-loop reference trajectory and the actual process.In the upper layer,the variant time scale based control vector parametric methods(VTS-CVP) was used for dynamic optimization of transition reference trajectory,while nonlinear model predictive controller(NMPC) based on closed-loop subspace and piece-wise linear(SSARX-PWL) model in the lower layer was tracking to the reference trajectory from the upper layer for overcoming high-frequency disturbances.Besides,mechanism about trajectory deviation detection and optimal trajectory updating online were introduced to ensure a smooth transition for the entire process.The proposed method was validated with the real data from an industrial double-loop propylene polymerization reaction process with developed dynamic mechanism mathematical model.
基金Funded by the National Natural Science Foundation of China(No.11547115)the Science Research Foundation for Ph D of Liaoning Province(No.201501091)
文摘The atomic geometry, structure stability, electronic and magnetic properties of VSe2 were systematically investigated based on the density functional theory(DFT). Varying from 3D to 2D four VSe2 structures, bulk 2H-VSe2 and 1T-VSe2, monolayer H-VSe2 and T-VSe2 are all demonstrated as thermodynamically stable by lattice dynamic calculations. More interestingly, the phase transition temperature is dramatically different due to the lattice size. Finally, owing to different crystal structures, H-VSe2 is semimetallic whereas T-VSe2 is totally metallic and also they have different magnetic moments. Our main argument is that being exfoliated from bulk to monolayer, 2H-VSe2 transforms to T-VSe2, accompanied by both semimetallic-metallic transition and dramatic magnetic moment variation. Our calculations provide a novel structure phase transition and an efficient way to modulate the electronic structure and magnetic moment of layered VSe2, which suggests potential applications as high-performance functional nanomaterial.
基金Supported by the NNSFC(No.21373223)Chunmiao project of Haixi Institute of Chinese Academy of Sciences(CMZX-2014-001)
文摘With transition metal complex, a discrete cuprous iodide compound, namely, [Ni(phen)3]2Cu6I10(1, phen = 1,10-phenanthroline) has been solvothermally synthesized and structurally characterized. Single-crystal X-ray diffraction studies revealed that compound 1 crystallizes in triclinic space group P1(No. 2) with a = 11.2694(2), b = 12.3699(3), c = 15.0387(3) ?, α = 102.840(2), β = 105.215(2), γ = 96.388(2)°, V = 1940.04(7) ^3, Z = 1, Dc = 2.438 g·cm^-3, F(000) = 1324, R = 0.0256 and w R = 0.0555(I 〉 2σ(I)). Compound 1 features a discrete anionic moiety of [Cu6I10]^4- charge-balanced by two metal complexes of [Ni(phen)3]2+. The optical absorption edge of compound 1 was estimated to be 2.24 eV. Interestingly, nearly 95% of contaminant(crystal violet aqueous solution(CV), 50 m L, 1.0 × 10^-5 M) could be decolorized after exposure to visible light within 30 min, illustrating an impressive photocatalytic activity of compound 1. The thermal stability of 1 has also been studied.
文摘Shape-induced phase transition of vortex domain structures (VDSs) in BaTiO3 (BT) nanodots under open circuit boundary condition have been investigated using an effective Hamiltonian method. Our calculation indicates the tetragonal VDS missing in cubic BT nanodots can be induced by varying the shape of a nanodot from cube to platelet. Interestingly, a novel VDS is found in BT nanoplatelets in our simulations. Further investigation shows that it is a result of compromise between the ground state and the symmetry of the shape of the nanodot. Furthermore, based on the novel VDS, routes of controlling VDSs governed by homogeneous electric field and uniform stress are discussed. In particular, our results show the possibility of designing multi-states devices based on a single VDS. ~ 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.
文摘The doping of the spinel ferrites with selective cations usually improves the properties of the parent ferrite.The effect of Co^(2+)/Gd^(3+)co-substitution on the microstructure,optical,and magnetic properties of Cu1-xCoxFe2-xGdxO4 prepared by the citrate-nitrate auto-combustion synthesis was investigated.Characterization of the samples was performed with powder X-ray diffraction(XRD),Raman and Fouriertransform infrared(FTIR)spectroscopy,field-emission scanning electron microscopy,X-ray energydispersive spectroscopy,UV-Vis spectroscopy,and a vibrating sample magnetometer.The results of XRD,Raman,and FTIR analysis show a gradual structural phase transition from a tetragonal(I41/amd)structure to a cubic(Fd3m)structure.The bandgap energy of the studied samples is in a range of 1.57-1.75 eV with a minimum in sample x=0.06 and then increases.Magnetic investigations show that the presence of Co^(2+)/Gd^(3+)cations in an octahedral site of the copper ferrite structure could increase saturation magnetization and coercive field from 567.9 Oe and 23.62 emu/g to 929.4 Oe and 28.27 emu/g,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61674045,61911540074,and 21622304)the Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0200700)+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences(Chinese Academy of Sciences)(Grant Nos.XDB30000000 and QYZDB-SSW-SYS031)Zhihai Cheng was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(Grant No.21XNLG27).
文摘The ultrathinβ-Sn(001)films have attracted tremendous attention owing to its topological superconductivity(TSC),which hosts Majorana bound state(MBSs)for quantum computation.Recently,β-Sn(001)thin films have been successfully fabricated via phase transition engineering.However,the understanding of structural phase transition ofβ-Sn(001)thin films is still elusive.Here,we report the direct growth of ultrathinβ-Sn(001)films epitaxially on the highly oriented pyrolytic graphite(HOPG)substrate and the characterization of intricate structural-transition-induced superstructures.The morphology was obtained by using atomic force microscopy(AFM)and low-temperature scanning tunneling microscopy(STM),indicating a structure-related bilayer-by-bilayer growth mode.The ultrathinβ-Sn film was made of multiple domains with various superstructures.Both high-symmetric and distorted superstructures were observed in the atomic-resolution STM images of these domains.The formation mechanism of these superstructures was further discussed based on the structural phase transition ofβtoα-Sn at the atomic-scale thickness.Our work not only brings a deep understanding of the structural phase transition of Sn film at the two-dimensional limit,but also paves a way to investigate their structure-sensitive topological properties.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403the National Natural Science Foundation of China under Grant Nos 11521404,11634009,U1632102,11504230,11674222,11574202,11674226,11574201 and U1632272
文摘Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.
文摘Using DTA (difFerential thermal analysis) measurement on nanostructured TiO2, we find two endothermic peaks on the DTA curve. From XRD (X-ray diffraction) analysis of the original nanostructured TiO2 and its heat-treated samples, we obtain the following results: the first endothermic peak corresponds to the desorption of physical or chemical absorption, the second one is related to the structural phase transition from brookite to anatase then to rutile, and this structural phase transition is beneficial to the grain growth of nanocrystal