To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products hav...To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products have been gaining increasing interest.Cu-based CO_(2)reduction catalysts have attracted widespread attention owing to their capability of generating C1 and C_(2+)products.However,Cu-based catalysts are highly challenged by their low product selectivity.Recently,Cu-based bimetallic catalysts have been found the unique catalytical activity and selectivity in CO_(2)reduction reactions(CO_(2)RR).The incorporation of other metals can change the electronic circumstance of Cu-based catalysts,promoting the adsorption ability of the intermediate products and consequently leading to high selectivity.In this minireview,we intend to summarize recent advances of Cu-based bimetallic catalysts in producing C1 and C_(2+)products,involving designing heterostructure,alloy,defects and surface modification engineering.We pay special attention to the regulation of electronic structure of the composite catalysts,as well as insights into the relationship between electronic property and catalytical performance for Cu-based bimetallic catalysts.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type...Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.展开更多
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv...Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.展开更多
Anode-free sodium metal batteries(AFSMBs)have gained attention as next-generation storage systems with high energy density and cost-effectiveness.However,non-uniform sodium(Na)deposition and an unsteady solid electrol...Anode-free sodium metal batteries(AFSMBs)have gained attention as next-generation storage systems with high energy density and cost-effectiveness.However,non-uniform sodium(Na)deposition and an unsteady solid electrolyte interphase(SEI)lead to dendrite-related issues and severe irreversible Na^(+)plating/stripping,greatly aggravating their cycle deterioration.In this study,we effectively modified the 3D current collector's electronic structure by introducing Zn-N_(x)active sites(Zn-CNF),which enhances lateral Na^(+)diffusion and the Na planar growth,enabling uniform deep Na deposition at an exceptionally high capacity of 10 mA h cm^(-2).Furthermore,the Zn-N_(x)bonds enhance the adsorption capacity of PF6and contribute to forming a stable inorganic-rich SEI layer.Consequently,Zn-CNF with the electronic structure regulation endows an ultra-low nucleation overpotential(8 mV)and ultra-high Coulombic efficiency of 99.94%over 1,600 cycles.Symmetric cells demonstrate stable Na^(+)plating/stripping behavior for more than 4,400 h at 1 mA cm^(-2).Moreover,under high cathode loading(7.97 mg cm^(-2)),the AFSMBs achieve a high energy density of 374 W h kg^(-1)and retain a high discharge capacity of 82.49 mA h g^(-1)with a capacity retention of 80.4%after 120 cycles.This work proposes a viable strategy to achieving high-energy-density AFSMBs.展开更多
Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic ...Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts.展开更多
Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among t...Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among the most promising candidates for this application,the relationship between Ni coordination structure and catalytic properties is still under strong debate.Here,we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon(NC)followed by Ni atom anchoring using atomic layer deposition.Among them,a Ni_(1)/NC SAC,with a coordination number(CN)of four but less pyridinic nitrogen(N_(pyri)),achieved over 90%faradaic efϐiciency for CO at potentials from-0.7 to-1.0 V and a mass activity of 6.5 A/mgNi at-0.78 V along with high stability,outperforming other Ni SACs with lower CN and more N_(pyri).Theoretical calculations of various three and four-coordinated Ni_(1)-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital(HOMO)position of Ni-3d orbitals,therein the four-coordinated Ni_(1)-N_(1)C_(3)with the highest HOMO position is identified as the active site for the electrocatalytic CO_(2)-to-CO process,in line with the experimental results.展开更多
Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a significant challenge.Herein,we constructed S-doped ultra-fine RuO...Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a significant challenge.Herein,we constructed S-doped ultra-fine RuO_(2) nanodots that were uniformly dispersed on carbon nanotubes.The incorporation of S effectively induces local rearrangement of the electronic structure of RuO_(2),thereby enhancing the dispersion of RuO_(2) as active sites and optimizing the adsorption free energy of H^(∗)intermediate.As ex-pected,the as-synthesized S-RuO_(2)/CNT delivers remarkable HER activity in all pH electrolytes,achieving lower overpotentials of 136,159,and 396 mV at 100 mA cm^(-2) in acidic,neutral,and basic solutions,respectively.Moreover,a unitary S-RuO_(2)/CNT electrolytic cell requires only a lower voltage(1.476 V)to achieve a current density of 10 mA cm^(-2) in 1.0 mol/L KOH.This ingenious work represents a significant breakthrough in the rational design of bifunctional electrocatalysts,enabling remarkable performance in electrochemical water electrolysis.展开更多
In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare...In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance.展开更多
At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficult...At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB.展开更多
The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with eq...The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.展开更多
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phos...The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.展开更多
Electrolyzing seawater is a promising solution to produce hydrogen,which is hindered by low-efficiency oxygen evolution reaction(OER)and noxious chloride chemistry.Herein,the Fe-Co_(2)P/CeO_(2)heterostructure nanoshee...Electrolyzing seawater is a promising solution to produce hydrogen,which is hindered by low-efficiency oxygen evolution reaction(OER)and noxious chloride chemistry.Herein,the Fe-Co_(2)P/CeO_(2)heterostructure nanosheet arrays are developed to achieve energy-saving and chlorine-free hydrogen generation by coupling hydrogen evolution reaction(HER)with hydrazine oxidation reaction(HzOR)in seawater.The Fe-Co_(2)P/CeO_(2)realizes current densities of 10 and 400 mA·cm^(-2)at 52 and204 mV for HER.The anode potential is significantly decreased after replacing OER with HzOR.Theoretical calculations display that the electronic structure of Fe-Co_(2)P can be regulated after coupling CeO_(2),which lowers the water dissociation barrier and optimizes hydrogen adsorption-free energy,thus boosting catalytic kinetics.Significantly,the hybrid seawater electrolyzer produces hydrogen at ultralow cell voltages,greatly reducing traditional water electrolysis voltages and avoiding hazardous chlorine chemistry.This study provides an avenue to exploit advanced catalysts for acquiring hydrogen with energy-efficiency and chlorine-free from abundant ocean.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is...Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.展开更多
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre...To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.展开更多
Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat...Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.展开更多
Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.Ho...Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials.展开更多
Herein,a one-pot method is proposed to manufacture recyclable polyvinyl alcohol/cellulose nanofibers composites with excellent mechanical and barrier performance through wet co-milling of the 2,2,6,6-tetramethylpiperi...Herein,a one-pot method is proposed to manufacture recyclable polyvinyl alcohol/cellulose nanofibers composites with excellent mechanical and barrier performance through wet co-milling of the 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized bamboo pulp in the polyvinyl alcohol aqueous solution.This strategy achieves ultrafine nano-fibrillation of cellulose pulp into nanofibers and their simultaneous homogenous distribution in the polyvinyl alcohol matrix,as evidenced by the homogenized structural morphology and enhanced interfacial interactions.With increased grinding degree,the cellulose fibers are gradually exfoliated and uniformly distributed in the polyvinyl alcohol matrix.The structure evolution of polyvinyl alcohol/cellulose composites during exfoliation and the structure-properties relationship are systematically analyzed.Consequently,the resultant polyvinyl alcohol/cellulose nanofibers composite films exhibit a‘reinforced concrete’structure with improved grain boundary strengthening effect,stress transfer capability and barrier properties.The elastic modulus,tensile strength and toughness of the polyvinyl alcohol/cellulose nanofibers composite films are significantly enhanced by 195.1%,33.8%and 56.2%compared to those of pure polyvinyl alcohol film,respectively.The greatly reduced oxygen permeability coefficient demonstrates their great potential in food packaging.This research proposes a practical one-pot method for the fabrication and structure regulation of polyvinyl alcohol/cellulose nanofibers composites and provides valuable insights into their structure-property relationships.展开更多
基金supported by Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science,China,the National Natural Science Foundation of China(Nos.21773311,21972169)the Hunan Provincial Science and Technology Plan Project,China(No.2019TP1001)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China.
文摘To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products have been gaining increasing interest.Cu-based CO_(2)reduction catalysts have attracted widespread attention owing to their capability of generating C1 and C_(2+)products.However,Cu-based catalysts are highly challenged by their low product selectivity.Recently,Cu-based bimetallic catalysts have been found the unique catalytical activity and selectivity in CO_(2)reduction reactions(CO_(2)RR).The incorporation of other metals can change the electronic circumstance of Cu-based catalysts,promoting the adsorption ability of the intermediate products and consequently leading to high selectivity.In this minireview,we intend to summarize recent advances of Cu-based bimetallic catalysts in producing C1 and C_(2+)products,involving designing heterostructure,alloy,defects and surface modification engineering.We pay special attention to the regulation of electronic structure of the composite catalysts,as well as insights into the relationship between electronic property and catalytical performance for Cu-based bimetallic catalysts.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272208,22309057)the Natural Science Foundation of Hubei Province(Grant No.2023AFB355)the Fundamental Research Funds for the Central Universities of China(Grant No.2662022LXQD001).
文摘Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.
文摘Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.
基金supports by Central South University Innovation-Driven Research Programme(2023CXQD038)the Fundamental Research Funds for the Central Universities of Central South University(2025ZZTS0089)supported by the High Performance Computing Center of Central South University.
文摘Anode-free sodium metal batteries(AFSMBs)have gained attention as next-generation storage systems with high energy density and cost-effectiveness.However,non-uniform sodium(Na)deposition and an unsteady solid electrolyte interphase(SEI)lead to dendrite-related issues and severe irreversible Na^(+)plating/stripping,greatly aggravating their cycle deterioration.In this study,we effectively modified the 3D current collector's electronic structure by introducing Zn-N_(x)active sites(Zn-CNF),which enhances lateral Na^(+)diffusion and the Na planar growth,enabling uniform deep Na deposition at an exceptionally high capacity of 10 mA h cm^(-2).Furthermore,the Zn-N_(x)bonds enhance the adsorption capacity of PF6and contribute to forming a stable inorganic-rich SEI layer.Consequently,Zn-CNF with the electronic structure regulation endows an ultra-low nucleation overpotential(8 mV)and ultra-high Coulombic efficiency of 99.94%over 1,600 cycles.Symmetric cells demonstrate stable Na^(+)plating/stripping behavior for more than 4,400 h at 1 mA cm^(-2).Moreover,under high cathode loading(7.97 mg cm^(-2)),the AFSMBs achieve a high energy density of 374 W h kg^(-1)and retain a high discharge capacity of 82.49 mA h g^(-1)with a capacity retention of 80.4%after 120 cycles.This work proposes a viable strategy to achieving high-energy-density AFSMBs.
基金supported by the National Natural Science Foundation of China(Nos.22322104,22171074)the Natural Science Foundation of Heilongjiang Province(No.YQ2021B009)+3 种基金the Reform and Development Fund Project of Local University supported by the Central Government(Outstanding Youth Program)Heilongjiang Province Young Scientific and Technological Talent Lifting Project(No.2023QNTJ019)the Basic Research Support Project for Outstanding Young Teachers in Heilongjiang Provincial University(No.YQJH2023129)the Outstanding Youth Science Foundation of Heilongjiang University(No.JCL202301)。
文摘Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts.
文摘Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among the most promising candidates for this application,the relationship between Ni coordination structure and catalytic properties is still under strong debate.Here,we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon(NC)followed by Ni atom anchoring using atomic layer deposition.Among them,a Ni_(1)/NC SAC,with a coordination number(CN)of four but less pyridinic nitrogen(N_(pyri)),achieved over 90%faradaic efϐiciency for CO at potentials from-0.7 to-1.0 V and a mass activity of 6.5 A/mgNi at-0.78 V along with high stability,outperforming other Ni SACs with lower CN and more N_(pyri).Theoretical calculations of various three and four-coordinated Ni_(1)-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital(HOMO)position of Ni-3d orbitals,therein the four-coordinated Ni_(1)-N_(1)C_(3)with the highest HOMO position is identified as the active site for the electrocatalytic CO_(2)-to-CO process,in line with the experimental results.
基金financially supported by the Joint Fund of Science and Technology R&D Plan of Henan Province(No.232301420003)。
文摘Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a significant challenge.Herein,we constructed S-doped ultra-fine RuO_(2) nanodots that were uniformly dispersed on carbon nanotubes.The incorporation of S effectively induces local rearrangement of the electronic structure of RuO_(2),thereby enhancing the dispersion of RuO_(2) as active sites and optimizing the adsorption free energy of H^(∗)intermediate.As ex-pected,the as-synthesized S-RuO_(2)/CNT delivers remarkable HER activity in all pH electrolytes,achieving lower overpotentials of 136,159,and 396 mV at 100 mA cm^(-2) in acidic,neutral,and basic solutions,respectively.Moreover,a unitary S-RuO_(2)/CNT electrolytic cell requires only a lower voltage(1.476 V)to achieve a current density of 10 mA cm^(-2) in 1.0 mol/L KOH.This ingenious work represents a significant breakthrough in the rational design of bifunctional electrocatalysts,enabling remarkable performance in electrochemical water electrolysis.
基金supported by the National Natural Science Foundation of China(No.52274294)the Fundamental Research Funds for the Central Universities,China(No.N2124007-1)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(No.SKLSP202101)。
文摘In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance.
基金financially supported by the National Natural Science Foundation of China(Nos.22168040 and 22162025)the Project of Science&Technology Office of Shannxi Province(No.2022JM-062)。
文摘At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB.
基金supported by the National Natural Science Foundation of China(No.2012BAD20B04)
文摘The title compound 1-(3-amino-[1,2,4]triazol-1-yl)-3,3-dimethyl-butan-2-one(3) was synthesized by Hofmann-alkylation reaction of 1-chloro-3,3-dimethyl-butan-2-one(1) and ~1H-[1,2,4]triazol-3-ylamine(2) with equal amount of K_2CO_3 as acid acceptor. The structure of compound 3 was characterized by ~1H NMR, 13 C NMR, HRMS and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n with a = 5.7227(8), b = 27.924(4), c = 6.2282(7) ?, β = 101.892(11)°, V = 973.9(2) ?~3, Z = 4, T = 180.00(10) K, μ(MoKα) = 0.087 mm^(-1), Dc = 1.243 g/cm^3, 3832 reflections measured(3.648≤θ≤26.022°), 1916 unique reflections(Rint = 0.0359, Rsigma = 0.0572) used in all calculations. The final R = 0.0557(I 〉 2σ(I)) and w R = 0.1276(all data). Bioassay showed that 3 displayed excellent activity as plant growth regulator with inducing lateral root formation and enhancing primary root elongation at 0.27 mmol/L(50 ppm) in soybeen(He Feng-50). Good water solubility was found with 50 mg in 1 m L of water. Therefore, application of 3 in agriculture is more environmentally friendly due to cosolvent-free condition, and results in improved abiotic-stress tolerance by affecting the root growth. And furthermore, it can be used as a precursor to investigate the function of regulating plant root growth.
基金financially supported by Shenzhen Bureau of Science,Technology and Innovation Commission(No.JSGG20200914113601003)the National Natural Science Foundation of China(No.51971080)。
文摘The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(No.22302103)the Natural Science Foundation of Jiangsu Province(No.BK20230619)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.23KJB540003)the Science Research Program of Nantong University(No.03083110)。
文摘Electrolyzing seawater is a promising solution to produce hydrogen,which is hindered by low-efficiency oxygen evolution reaction(OER)and noxious chloride chemistry.Herein,the Fe-Co_(2)P/CeO_(2)heterostructure nanosheet arrays are developed to achieve energy-saving and chlorine-free hydrogen generation by coupling hydrogen evolution reaction(HER)with hydrazine oxidation reaction(HzOR)in seawater.The Fe-Co_(2)P/CeO_(2)realizes current densities of 10 and 400 mA·cm^(-2)at 52 and204 mV for HER.The anode potential is significantly decreased after replacing OER with HzOR.Theoretical calculations display that the electronic structure of Fe-Co_(2)P can be regulated after coupling CeO_(2),which lowers the water dissociation barrier and optimizes hydrogen adsorption-free energy,thus boosting catalytic kinetics.Significantly,the hybrid seawater electrolyzer produces hydrogen at ultralow cell voltages,greatly reducing traditional water electrolysis voltages and avoiding hazardous chlorine chemistry.This study provides an avenue to exploit advanced catalysts for acquiring hydrogen with energy-efficiency and chlorine-free from abundant ocean.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
文摘Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.
基金Tural Science Foundation of China(No.52274255)the Young Scientists Fund of the National Natural ScienceFoundation of China(No.52404276)+3 种基金Fundamental Re-search Funds for the Central Universities,China(Nos.N2301003,N2201008,N2201004,and N2301025)Liaon-ingRevitalizationTalentsProgram,China(No.XLYC2202028)Postdoctoral Foundation of NortheasternUniversity,Young Elite Scientists Sponsorship Program byChina Association for Science and Technology(No.2022QNRC001)and China Postdoctoral Science Founda-tion(No.2022M720025)。
文摘To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.
文摘Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.
基金supported by the National Natural Science Foundation of China(No.51874036)the Natural Science Foundation of Ningxia(No.2024AAC02034)。
文摘Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials.
基金supported by the Tianfu Yongxing Laboratory Organized Research Project Funding(Grant No.2023KJGG12)the Joint Project for Talent Innovation Sharing Alliance of Quanzhou(Grant No.2022C001L)+1 种基金the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization(Grant No.HZXYKFKT202306)the Guangxi Science and Technology Base and Special Talents Program(Grant No.AD23023008).
文摘Herein,a one-pot method is proposed to manufacture recyclable polyvinyl alcohol/cellulose nanofibers composites with excellent mechanical and barrier performance through wet co-milling of the 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized bamboo pulp in the polyvinyl alcohol aqueous solution.This strategy achieves ultrafine nano-fibrillation of cellulose pulp into nanofibers and their simultaneous homogenous distribution in the polyvinyl alcohol matrix,as evidenced by the homogenized structural morphology and enhanced interfacial interactions.With increased grinding degree,the cellulose fibers are gradually exfoliated and uniformly distributed in the polyvinyl alcohol matrix.The structure evolution of polyvinyl alcohol/cellulose composites during exfoliation and the structure-properties relationship are systematically analyzed.Consequently,the resultant polyvinyl alcohol/cellulose nanofibers composite films exhibit a‘reinforced concrete’structure with improved grain boundary strengthening effect,stress transfer capability and barrier properties.The elastic modulus,tensile strength and toughness of the polyvinyl alcohol/cellulose nanofibers composite films are significantly enhanced by 195.1%,33.8%and 56.2%compared to those of pure polyvinyl alcohol film,respectively.The greatly reduced oxygen permeability coefficient demonstrates their great potential in food packaging.This research proposes a practical one-pot method for the fabrication and structure regulation of polyvinyl alcohol/cellulose nanofibers composites and provides valuable insights into their structure-property relationships.