In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates t...In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential.展开更多
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p...To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.展开更多
基金Supported by the National Natural Science Foundation of China(42362026)Key R&D Project of Xinjiang Uygur Autonomous Region(2024B01015).
文摘In the ultra-deep strata of the Tarim Basin,the vertical growth process of strike-slip faults remains unclear,and the vertical distribution of fractured-cavity carbonate reservoirs is complex.This paper investigates the vertical growth process of strike-slip faults through field outcrop observations in the Keping area,interpretation of seismic data from the Fuman Oilfield,Tarim Basim,NW China,and structural physical simulation experiments.The results are obtained mainly in four aspects.First,field outcrops and ultra-deep seismic profiles indicate a three-layer structure within the strike-slip fault,consisting of fault core,fracture zone and primary rock.The fault core can be classified into three parts vertically:fracture-cavity unit,fault clay and breccia zone.The distribution of fracture-cavity units demonstrates a distinct pattern of vertical stratification,owing to the structural characteristics and growth process of the slip-strike fault.Second,the ultra-deep seismic profiles show multiple fracture-cavity units in the strike-slip fault zone.These units can be classified into four types:top fractured,middle connected,deep terminated,and intra-layer fractured.Third,structural physical simulation experiments and ultra-deep seismic data interpretation reveal that the strike-slip faults have evolved vertically in three stages:segmental rupture,vertical growth,and connection and extension.The particle image velocimetry detection demonstrates that the initial fracture of the fault zone occurred at the top or bottom and then evolved into cavities gradually along with the fault growth,accompanied by the emergence of new fractures in the middle part of the strata,which subsequently connected with the deep and shallow cavities to form a complete fault zone.Fourth,the ultra-deep carbonate strata primarily develop three types of fractured-cavity reservoirs:flower-shaped fracture,large and deep fault and staggered overlap.The first two types are larger in size with better reservoir conditions,suggesting a significant exploration potential.
基金Projects(51104187,51274241,61321003) supported by the National Natural Science Foundation of ChinaProject(20100162120008) supported by Doctoral Fund of Ministry of Education of China
文摘To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.