期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Structure engineering of cathode host materials for Li-S batteries 被引量:3
1
作者 Jia-Jun Long Hua Yu Wen-Bo Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1370-1389,共20页
Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges in... Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided. 展开更多
关键词 Lithium-sulfur batteries structure engineering CATHODE Host materials
原文传递
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:3
2
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching structure engineering modulation
在线阅读 下载PDF
Impact of Oxygen Vacancy on Band Structure Engineering of n-p Codoped Anatase TiO2
3
作者 孟强强 王加军 +1 位作者 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第2期155-160,I0001,共7页
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i... Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance. 展开更多
关键词 Oxygen vacancy Band structure engineering n-p codoped Anatase TiO2
在线阅读 下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:6
4
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang Huaiyu Shao Guichuan Xing Xiangping Li Liyang Shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 Band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
在线阅读 下载PDF
Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures 被引量:1
5
作者 Wei Yao Martin Aeschlimann Shuyun Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期5-16,共12页
Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking ... Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected. 展开更多
关键词 twisted bilayer graphene van der Waals heterostructure band structure engineering
原文传递
Analysis on Construction Technology of Leakage Treatment for Main Structure Engineering of Open-cut Subway Station
6
作者 LUOXiaojian 《外文科技期刊数据库(文摘版)工程技术》 2022年第1期049-052,共4页
With the continuous development of urbanization construction, rail transit has received more and more attention. For the current subway station, the main structure of open-cut subway station plays an important role in... With the continuous development of urbanization construction, rail transit has received more and more attention. For the current subway station, the main structure of open-cut subway station plays an important role in it. Therefore, the leakage problem with high frequency should be analyzed in time and dealt with reasonably. In this paper, the construction technology of leakage treatment for the main structure of open-cut subway station is analyzed for reference. 展开更多
关键词 open-cut subway stations main structure engineering water leakage treatment construction technique
原文传递
Analysis of the Durability and Safety Design Measures in Building Structure Engineering
7
作者 YANGSha 《外文科技期刊数据库(文摘版)工程技术》 2022年第9期001-005,共5页
Architectural structure engineering occupies a major position in architectural engineering and has a direct impact on the design quality of the whole building. As far as architectural structure design is concerned, sa... Architectural structure engineering occupies a major position in architectural engineering and has a direct impact on the design quality of the whole building. As far as architectural structure design is concerned, safety and durability have received more and more attention, which are also the two major focuses of current architectural structure engineering design. However, there are still some problems in carrying out these two tasks, which greatly affect the final construction quality. This paper studies the durability and safety of building structure engineering, hoping to effectively improve the overall design quality of building structure and meet the living needs. 展开更多
关键词 building structure engineering DURABILITY SAFETY
原文传递
Building Main Structure Engineering Construction Technology
8
作者 ZHANG Hao 《外文科技期刊数据库(文摘版)工程技术》 2021年第6期267-269,共5页
The construction project in the actual construction process, in order to comprehensively ensure the construction quality, we should strengthen the importance of the main design of the building, and through the applica... The construction project in the actual construction process, in order to comprehensively ensure the construction quality, we should strengthen the importance of the main design of the building, and through the application of standardized construction technology, reasonable control of the construction progress and quality, to ensure the smooth progress of the follow-up work. Based on this, this paper mainly around the importance of the construction of the main structure of the building to launch an analysis, elaborated the technical application countermeasures. 展开更多
关键词 BUILDING main structure engineering construction technology
原文传递
Analysis on the Causes of Cracks in Concrete Structure Engineering and Its Prevention and Treatment Technology
9
作者 JIANGYun 《外文科技期刊数据库(文摘版)工程技术》 2022年第5期013-018,共6页
It is not difficult to find out that cracks in concrete structural engineering are ubiquitous. Because the damage of the structure often begins with cracks, it brings harm and risk to social production and life. Espec... It is not difficult to find out that cracks in concrete structural engineering are ubiquitous. Because the damage of the structure often begins with cracks, it brings harm and risk to social production and life. Especially with the rapid development of my country's capital construction in recent decades, it is very necessary to understand and solve the ancient and novel problem of cracks in concrete structures. With the exploration and research of long-term engineering practice, with the continuous development of technology and productivity, people have realized that the generation of harmful cracks can be controlled through effective technical means. That is to say, through the organic combination of design and construction, the influence of cracks can be prevented from being harmful. 展开更多
关键词 cracks in concrete structure engineering prevention means repair scheme
原文传递
Kinked Rebar and Engineering Structures Applying Kinked Materials:State-ofthe-Art Review
10
作者 Chengquan Wang Lei Xu +4 位作者 Xinquan Wang Yun Zou Kangyu Wang Boyan Ping Xiao Li 《Structural Durability & Health Monitoring》 2025年第2期233-263,共31页
Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of ... Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of reinforced concrete(RC)structures without imposing substantial cost burdens,thereby emerging as a focal point of recent research endeavors.On the basis of explaining the working principle of kinked rebars,this paper reviews the research status of kinked rebars at home and abroad from three core domains:the tensile mechanical properties of kinked rebars,beam column nodes with kinked rebars,and concrete frame structures with kinked rebars.The analysis underscores that the straightening process of kinked rebars does not compromise their ultimate strength but significantly bolsters structural ductility and enhances energy dissipation capabilities.In beam-column joints,the incorporation of kinked rebars facilitates the seamless transfer of plastic hinges,adhering to the design principle of“strong columns and weak beams.”In addition,kinked rebars can greatly improve the resistance of the beam;The seismic resistance,internal explosion resistance,and progressive collapse resistance of reinforced concrete frame structures with kinked rebar have significantly improved.Beyond its primary application,the principle of kinked rebar was extended to other applications of kinked materials such as corrugated steel plates and origami structures,and the stress characteristics of related components and structures were studied.Intriguingly,this paper also proposes the application of kinked rebars in bridge engineering,aiming to address the challenges of localized damage concentration and excessive residual displacement in RC bridge piers.The introduction of kinked rebars in piers is envisioned to mitigate these issues,with the paper outlining its advantages and feasibility,thereby offering valuable insights for future research on kinked reinforcement and seismic design strategies for bridges. 展开更多
关键词 Structural engineering kinked rebar seismic performance explosion-resistant performance progressive collapse
在线阅读 下载PDF
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
11
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 Reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Safety Evaluation and Management of Engineering Structures Based on Intelligent Technology
12
作者 Lingxu Li Mingchang Ma Zitong Ma 《Proceedings of Business and Economic Studies》 2025年第3期312-316,共5页
With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering stru... With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering structures.This paper discusses the role of intelligent technologies(such as artificial intelligence,Internet of Things,BIM,big data analysis,etc.)in the monitoring,evaluation,and maintenance of engineering structure safety.By studying the principle,application scenarios,and advantages of intelligent technology in structural safety evaluation,this paper summarizes how intelligent technology can improve engineering management efficiency and reduce safety risks,and puts forward the trend and challenge of future development. 展开更多
关键词 Intelligent technology engineering structure Safety evaluation Structural health monitoring BIM Big data
在线阅读 下载PDF
Multi-scale structure engineering of covalent organic framework for electrochemical charge storage 被引量:1
13
作者 Xiaofang Zhang Fangling Li +4 位作者 Shuangqiao Yang Baiqi Song Richu Luo Rui Xiong Weilin Xu 《SusMat》 SCIE EI 2024年第1期4-33,共30页
Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable... Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable topological architecture,pre-designable periodic skeleton,well-defined micro-/meso-pore,large specific surface area,and customizable electroactive functionality.Those benefits make COFs as promising candidates for advanced electrochemical energy storage.Especially,for now,structure engineering of COFs from multiscale aspects has been conducted to enable optimal overall electrochemical performance in terms of structure durability,electrical conductivity,redox activity,and charge storage.In this review,we give a fundamental and insightful study on the correlations between multi-scale structure engineering and eventual electrochemical properties of COFs,started with introducing their basic chemistries and charge storage principles.The careful discussion on the significant achievements in structure engineering of COFs from linkages,redox sites,polygon skeleton,crystal nanostructures,and composite microstructures,and further their effects on the electrochemical behavior of COFs are presented.Finally,the timely cutting-edge perspectives and in-depth insights into COFbased electrodematerials to rationally screen their electrochemical behaviors for addressing future challenges and implementing electrochemical energy storage applications are proposed. 展开更多
关键词 covalent organic frameworks electrochemical energy storage multi-scale structure engineering structure-performance correlation
原文传递
Surface and structure engineering of MXenes for rechargeable batteries beyond lithium
14
作者 Zefu Huang Majid Farahmandjou +4 位作者 Frederick Marlton Xin Guo Hong Gao Bing Sun Guoxiu Wang 《Journal of Materiomics》 SCIE CSCD 2024年第1期253-268,共16页
With the rapid growth in renewable energy,researchers worldwide are trying to expand energy storage technologies.The development of beyond-lithium battery technologies has accelerated in recent years,amid concerns reg... With the rapid growth in renewable energy,researchers worldwide are trying to expand energy storage technologies.The development of beyond-lithium battery technologies has accelerated in recent years,amid concerns regarding the sustainability of battery materials.However,the absence of suitable high-performance materials has hampered the development of the next-generation battery systems.MXenes,a family of 2D transition metal carbides and/or nitrides,have drawn significant attention recently for electrochemical energy storage,owing to their unique physical and chemical properties.The extraordinary electronic conductivity,compositional diversity,expandable crystal structure,superior hydrophilicity,and rich surface chemistries make MXenes promising materials for electrode and other components in rechargeable batteries.This report especially focuses on the recent MXene applications as novel electrode materials and functional separator modifiers in rechargeable batteries beyond lithium.In particular,we highlight the recent advances of surface and structure engineering strategies for improving the electrochemical performance of the MXene-based materials,including surface termination modifications,heteroatom doping strategies,surface coating,interlayer space changes,nanostructure engineering,and heterostructures and secondary materials engineering.Finally,perspectives for building future sustainable rechargeable batteries with MXenes and MXene-based composite materials are presented based upon material design and a fundamental understanding of the reaction mechanisms. 展开更多
关键词 MXenes Energy storage materials 2D materials Surface engineering structure engineering
原文传递
Effective stress dissipation by multi-dimensional architecture engineering for ultrafast and ultralong sodium storage
15
作者 Man Zhang Jing Zhu +7 位作者 Qianqian Li Fenghua Zheng Sijiang Hu Youguo Huang Hongqiang Wang Xing Ou Qichang Pan Qingyu Li 《Journal of Energy Chemistry》 2025年第2期619-629,I0013,共12页
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial... Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs. 展开更多
关键词 Stress dissipation Multi-dimensional architecture structure engineering Conversion-based anodes Sodium-ion batteries
在线阅读 下载PDF
Rational engineering of triazine-benzene linked covalent-organic frameworks for efficient CO_(2)photoreduction
16
作者 Yanghe Fu Yijing Gao +6 位作者 Huilin Jia Yuncai Zhao Yan Feng Weidong Zhu Fumin Zhang Morris D.Argyle Maohong Fan 《Green Energy & Environment》 2025年第4期804-812,共9页
Three large π-conjugated and imine-based COFs,named TFP-TAB,TFP-TTA,and TTA-TTB,were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural unit... Three large π-conjugated and imine-based COFs,named TFP-TAB,TFP-TTA,and TTA-TTB,were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural units affect the efficiency of CO_(2)photoreduction.Results from both experiments and density-functional theory(DFT)calculations indicate the separation and transfer of the photoinduced charges is highly related to the triazine-N content and the conjugation degree in the skeletons of COFs.High-efficiency CO_(2)photoreduction can be achieved by rationally adjusting the number and position of both benzene and triazine rings in the COFs.Specifically,TTA-TTB,with orderly interlaced triazine-benzene heterojunctions,can suppress the recombination probability of electrons and holes,which effectively immobilizes the key species(COOH)and lowers the free energy change of the potential-determining step,and thus exhibits a superior visible-light-induced photocatalytic activity that yields 121.7 μmol HCOOH g^(-1)h^(-1).This research,therefore,helps to elucidate the effects of the different structural blocks in COFs on inherent heterogeneous photocatalysis for CO_(2)reduction at a molecular level. 展开更多
关键词 Chemical structure engineering Photocatalysis CO_(2)reduction COFs Molecular simulation
在线阅读 下载PDF
Synthesis of Reviews on Auscultation, Approaches, and Methods for Engineering Structures
17
作者 Cheikh Ahmed Tidiane Ly Diogoye Diouf Séni Tamba 《International Journal of Geosciences》 CAS 2024年第10期765-773,共9页
Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, e... Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, etc. It first appeared as a visual method and rapidly evolved through the various techniques used. Some of these techniques using topography are used in several fields (civil engineering, geodesy, topography, mechanics, nuclear engineering, hydraulics, physics, etc.). These topometric techniques have undergone major changes as a result of technological advances, growing needs in the monitoring of movements or deformations, increased requirements and new challenges. The methodology adopted depends on the measuring instrument used, the parameters to be estimated and access to the area to be measured. There are two types of methods: destructive and non-destructive. In addition to the visual method, they can also be classified as mechanical, physico-chemical, dynamometric, electrophysical and geometric. The estimated parameter varies according to the methodology adopted. It can be defined by coordinates, distances, potential, electrical resistance, etc. 展开更多
关键词 AUSCULTATION engineering structure Topometry METHOD REVIEW
在线阅读 下载PDF
Unlocking the structure and anion synergistic modulation of MoSe_(2) anode for ultra-stable and high-rate sodium-ion storage
18
作者 Kang Xu Yu-Hui Li +6 位作者 Xin Wang Yu-Peng Cao Shuo-Tong Wang Liang Cao Qi-Tu Zhang Zhe-Fei Wang Jun Yang 《Rare Metals》 2025年第3期1661-1673,共13页
The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercala... The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercalation process,thereby affecting the cycling stability and lifespan of sodium-ion batteries(SIBs).In this work,a novel approach involving anionic doping and structural design has been proposed,wherein a two-step in-situ selenization and surface thermal annealing doping process is applied to fabricate a novel configuration material of fluorine-doped MoSe_(2)@nitrogen-doped carbon nanosheets(F-MoSe_(2)@FNC).The obtained F-MoSe_(2)@FNC,benefiting from the dual advantages of structure and F-doping,synergistically promotes and accelerates the stable(de)intercalation of Na^(+).Henceforth,F-MoSe_(2)@FNC demonstrates notable characteristics in terms of reversible specific capacity,boasting a high initial coulombic efficiency of 76.97%,alongside remarkable rate capabilities and cyclic stability.The constructed F-MoSe_(2)@FNC anode-based half cell manifests exceptional longevity,enduring up to 2550 cycles at 10 A·g^(-1)with a specific capacity of 322.04 mAh·g^(-1).Its electrochemical performance surpasses that of MoSe_(2)@NC and Pure MoSe_(2),underscoring the significance of the proposed synergistic modulation.Through comprehensive kinetic analyses,encompassing in-situ electrochemical impedance spectroscopy(EIS),it is elucidated that the F-MoSe_(2)@FNC electrode showcases elevated pseudo-capacitance and rapid diffusion attributes during charge and discharge processes.Furthermore,the assembled full-cell(F-MoSe_(2)@FNC//Na_(3)V_(2)(PO_(4))_(3))attains a notable energy density of 166.94 Wh·kg^(-1).This design provides insights for the optimization of MoSe_(2)electrodes and their applications in SIBs. 展开更多
关键词 Structural engineering Anion modulation Molybdenum diselenide Sodium-ion batteries Fast kinetics
原文传递
Structural engineering of MXenes towards high electrochemical performance in supercapacitors
19
作者 Yan Liu Kaiyang Guo +4 位作者 Yuanmeng Ge Wenzheng Yan Kai Gu Yapeng Tian Xinwei Cui 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1783-1812,共30页
Supercapacitors(SCs)stand out among various energy storage devices owing to their high power density and long-term cyc-ling stability.As new two-dimensional material,MXenes have become a research hotspot in recent yea... Supercapacitors(SCs)stand out among various energy storage devices owing to their high power density and long-term cyc-ling stability.As new two-dimensional material,MXenes have become a research hotspot in recent years owing to their unique structure and rich surface functional groups.Compared with other materials,MXenes are more promising for SCs owing to their tunable precurs-ors,structural stability,and excellent electrical conductivity.However,the rate performance and electrochemical reaction activity of MXene materials are poor,and stacking severely limits their application.Therefore,various modification strategies are employed to im-prove the electrochemical performance of MXene materials.As the modification strategy of MXene electrode materials often involves in-creasing the number of ion transport channels to expose more active sites,the packing density is also affected to different degrees.There-fore,achieving a balance between high volumetric capacitance and rapid ion transport has become a key issue for the application of MXene-based SCs in wearable devices and microdevices.In this paper,the latest progress in the preparation methods and modification strategies of MXenes in recent years is reviewed with the aim of achieving both high volumetric capacitance and high ion transport for ex-panding the application of MXene-based SCs in microdevices and wearable devices. 展开更多
关键词 MXenes structural engineering electrochemical performance SUPERCAPACITOR
在线阅读 下载PDF
Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring
20
作者 Yong Ao Long Jin +10 位作者 Shenglong Wang Bolin Lan Guo Tian Tianpei Xu Longchao Huang Zihan Wang Yue Sun Tao Yang Weili Deng Fan Yang Weiqing Yang 《Nano-Micro Letters》 2025年第12期526-539,共14页
The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement.However,there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena ... The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement.However,there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance.Here,we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite,whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design.Synergistically,molecular dynamics simulations,density functional theory calculations and experimental validation revealed the details of interfacial interactions,which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye.The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region,along with demonstrating cyclic stability exceeding 20,000 cycles.The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation.Attributed to the excellent piezoelectric response and deep learning algorithm,the sensor can effectively recognize the signals of artery pulse and finger flexion.Finally,a 3×3 sensor array is fabricated to monitor the pressure distribution wirelessly.This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs. 展开更多
关键词 Piezoelectric composite MXene/PVDF-TrFE Interfacial polarization Structural engineering
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部