期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Structure and Semiconducting Character of a Polymeric Iodoplumbate Coordination Complex
1
作者 宋德生 刘长春 +2 位作者 陈恒隽 苏东坡 傅志勇 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第8期1142-1146,共5页
A new polymeric iodoplumbate complex [Zn(DMF)6][Pb2I6] 1 has been prepared and characterized by elemental analysis and single-crystal X-ray analysis. Its structure contains infinite iodoplumbate chains constructed b... A new polymeric iodoplumbate complex [Zn(DMF)6][Pb2I6] 1 has been prepared and characterized by elemental analysis and single-crystal X-ray analysis. Its structure contains infinite iodoplumbate chains constructed by the [PbI5] subunit. EHT crystal orbital calculation and the experimental results show that this material is an unconventional semiconductor and the electrical character is associated with its structural feature. 展开更多
关键词 iodoplumbate coordination polymer structure and characterization semiconducting property
在线阅读 下载PDF
Atomically self-healing of structural defects in monolayer WSe_(2)
2
作者 Kangshu Li Junxian Li +2 位作者 Xiaocang Han Wu Zhou Xiaoxu Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期49-55,共7页
Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the meth... Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials. 展开更多
关键词 scanning transmission electron microscopy(STEM) atom manipulation nanoscale materials and structures:fabrication and characterization new materials:theory design FABRICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部