Economic losses and catastrophic casualties may occur once super high-rise structures are struck by low-probability but high-consequence scenarios of concurrent earthquakes and winds. Therefore, accurately predicting ...Economic losses and catastrophic casualties may occur once super high-rise structures are struck by low-probability but high-consequence scenarios of concurrent earthquakes and winds. Therefore, accurately predicting multi-hazard dynamic responses to super high-rise structures has significant engineering and scientific value. This study performed a parametric global sensitivity analysis (GSA) for multi-hazard dynamic response prediction of super high-rise structures using the multiple-degree-of-freedom shear (MFS) model. Polynomial chaos Kriging (PCK) was introduced to build a surrogate model that allowed GSA to be combined with Sobol’ indices. Monte Carlo simulation (MCS) is also conducted for the comparison to verify the accuracy and efficiency of the PCK method. Parametric sensitivity analysis is performed for a wide range of aleatory uncertainty (intensities of coupled multi-hazard), epistemic uncertainty (bending stiffness, k_(m);shear stiffness, kq;density, ρ;and damping ratio, ξ), probability distribution types, and coefficients of variation. The results indicate that epistemic uncertainty parameters, k_(m), ρ, and ξ dramatically affect the multi-hazard dynamic responses of super high-rise structures;in addition, Sobol’ indices between the normal and lognormal distributions are insignificant, while the variation levels have remarkably influenced the sensitivity indices.展开更多
Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigi...Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigid pressure sensors.However,arising from the limited compressibility of soft materials and the hardening of microstructures at the device interface,there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors,which results in a gradual saturation response and limits their practical applications.Herein,inspired by the distinct pressure perception function of crocodile receptors,a highly sensitive and wide-range flexible pressure sensor with multiscale microdomes and interlocked architecture is developed via a facile PS-decorated molding method.Combined with interlocked architecture,the multiscale dome-shaped structured interface enhances the compressibility of the material through structural complementarity,increases the contact area between functional materials,which compensates for the stiffness induced by the deformation of dense microscale columns.This effectively mitigates structural hardening across a wide pressure range,leading to the overall high performance of the sensor.As a result,the obtained sensor exhibits a low detection limit of 5 Pa,a high sensitivity of 6.14 kPa^(-1),a wide measurement range up to 231 kPa,short response/recovery time of 56 ms/69 ms,outstanding stability over 10,000 cycles.Considering these excellent properties,the sensor shows promising potential in health monitoring,human-computer interaction,wearable electronics.This study presents a strategy for the fabrication of flexible pressure sensors exhibiting high sensitivity and a wide pressure response range.展开更多
We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of sin...We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells.展开更多
The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscop...The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscopy. The results show that with the decrease of quenching rate from 960 ℃/s to 2 ℃/s, the hardness after aging is decreased by about 33% for the homogenized and solution heat treated alloy(H-alloy) with large equiaxed grains and about 43% for the extruded and solution heat treated alloy(E-alloy) with elongated grains and subgrains. Cr-containing dispersoids make contribution to about 33% decrement in hardness of the H-alloy due to slow quenching; while in the E-alloy, the amount of(sub) grain boundaries is increased by about one order of magnitude, which leads to a further 10% decrement in hardness due to slow quenching and therefore higher quench sensitivity.展开更多
Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have ...Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.展开更多
Flexible piezoresistive sensors based on biomimetic microstructures are prospective for broad application in motion monitoring.However,the design and preparation processes of most biomimetic microstructures in the exi...Flexible piezoresistive sensors based on biomimetic microstructures are prospective for broad application in motion monitoring.However,the design and preparation processes of most biomimetic microstructures in the existing studies are complicated,and there are few studies on pore size control.Herein,the porous structure of human bones was used as a biomimetic prototype,and optimally designed by creating a theoretical equivalent sensor model and a finite element model.Soluble raw materials such as sugar and salt in different particle sizes were pressed into porous templates.Based on the template method,porous structures in different pore sizes were prepared using polydimethylsiloxane(PDMS)polymer as the substrate.On this basis,graphene oxide conductive coating was prepared with the modified Hummers method and then deposited via dip coating onto the substrate.Finally,a PDMS-based porous structure biomimetic flexible piezoresistive sensor was developed.Mechanically,the deformation of the sensor under the same load increased with the pore size rising from 0.3 to 1.5 mm.Electrically,the resistance rang of the sensor was enlarged as the pore size rose.The resistance variation rates of samples with pore sizes of 0.3,1.0,and 1.5 mm at approximately the 200th cycle were 63%,79%,and 81%,respectively;at the 500th cycle,these values were 63%,77%,and 79%;and at the 1000th cycle,they stabilized at 63%,74%,and 76%.These results indicate that the fabricated sensor exhibits high stability and fatigue resistance.At the pressure of 0–25 kPa,the sensitivity rose from 0.0688 to 0.1260 kPa−1,and the performance was enhanced by 83%.After 1,000 cycles of compression testing,the signal output was stable,and no damage was caused to the substrate.Further application tests showed the biomimetic sensor accurately and effectively identified human joint motions and gestures,and has potential application value in human motion monitoring.展开更多
High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research objec...High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.展开更多
The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant i...The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.展开更多
A systematic study on the structure sensitivity,host effect,and the deactivation mechanism of Ircatalyzed selective hydrogenation of 1,3-butadiene,a key process in the purification of alkadiene for the upgrading of C4...A systematic study on the structure sensitivity,host effect,and the deactivation mechanism of Ircatalyzed selective hydrogenation of 1,3-butadiene,a key process in the purification of alkadiene for the upgrading of C4 cut,is presented by coupling steady-state catalytic testing,in-depth characterization,kinetic evaluation,and density functional theory calculations.We reveal that:(i) 1,3-Butadiene hydrogenation on iridium is structure-sensitive with the optimal particle size of about 2 nm,and the H_(2) dissociation energy is a reliable activity descriptor;(ii) The nature of the NC hosts exerts a critical impact on the catalytic performance,and balanced nitrogen content and speciation seem key for the optimized performance;and (iii) Different deactivation mechanisms occur:fouling by coke deposition on the catalysts with a high N:C ratio (>1),and site blockage due to the competitive adsorption between 1-butene/cis-2-butene and 1,3-butadiene.These molecular insights provide valuable guidelines for the catalyst design in selective hydrogenations.展开更多
This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenv...This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms,and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors are developed.With these formulations,the efficient methods based on the second-order Taylor expansion and second-order perturbation are obtained to estimate changes of eigenvalues and eigenvectors when the design parameters are changed. The presented method avoids direct differential operation,and thus reduces difficulty for computing the second-order sensitivity matrices of eigenpairs.A numerical example is given to demonstrate application and accuracy of the proposed method.展开更多
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg...Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.展开更多
The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as w...The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as well as the full-lamellar structure.The low-cost Ti-42.5Al-2Mn-0.4Mo-0.1B-0.1C(at.%)alloy was designed,which undergoes bothβandαsingle-phase region during the solidification.It is found that the full-lamellar structure can be obtained by the solution heat treatment at 1230℃ for 20 min and then aging treatment at 800℃ for 3 h.Interestingly,a new microstructure,namely,the pearlitic-like microstructure(PM)induced by theα_(2)/γ→βo+γcellular reaction was observed when the aging temperature is increased to above 800℃.The volume fraction of the PM is gradually increased from 0%to 25.5%,65%,and 94%according to elevated aging temperature from 800 to 900,1000,and 1050℃,respectively.The mechanism of the reducedα_(2)/γlamellae and PM formation was discussed regarding the heterogeneous distribution ofβstabilizing elements and the interface energy stored inα_(2)/γlamellae.展开更多
Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effec...Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible.展开更多
The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structur...The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To ...Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events.展开更多
As the supporting supplier of the main engine plant, the general air filter manufacturers have insufficient technical reserves. The structural optimization of air filter is often based on the bench experiment, which h...As the supporting supplier of the main engine plant, the general air filter manufacturers have insufficient technical reserves. The structural optimization of air filter is often based on the bench experiment, which has high implementation cost and poor performance. In view of this, taking computational fluid dynamics(CFD) as the basic technical means, an optimization design method based on parametric sensitivity combined with equidistant search was proposed. Specifically, the sensitivity of local structure parameters to pressure loss was analyzed by taking local structure of air filter as the object. According to the sensitivity, the method of equidistant search was used to optimize the parameters in order, so as to achieve the goal of overall optimization. After optimization, the pressure loss decreased by 45.13% and the effect was remarkable.展开更多
With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including op...With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.展开更多
The correlation coefficients of random variables of mechanical structures are generally chosen with experience or even ignored,which cannot actually reflect the effects of parameter uncertainties on reliability.To dis...The correlation coefficients of random variables of mechanical structures are generally chosen with experience or even ignored,which cannot actually reflect the effects of parameter uncertainties on reliability.To discuss the selection problem of the correlation coefficients from the reliability-based sensitivity point of view,the theory principle of the problem is established based on the results of the reliability sensitivity,and the criterion of correlation among random variables is shown.The values of the correlation coefficients are obtained according to the proposed principle and the reliability sensitivity problem is discussed.Numerical studies have shown the following results:(1) If the sensitivity value of correlation coefficient ρ is less than(at what magnitude 0.000 01),then the correlation could be ignored,which could simplify the procedure without introducing additional error.(2) However,as the difference between ρs,that is the most sensitive to the reliability,and ρR,that is with the smallest reliability,is less than 0.001,ρs is suggested to model the dependency of random variables.This could ensure the robust quality of system without the loss of safety requirement.(3) In the case of |Eabs|ρ0.001 and also |Erel|ρ0.001,ρR should be employed to quantify the correlation among random variables in order to ensure the accuracy of reliability analysis.Application of the proposed approach could provide a practical routine for mechanical design and manufactory to study the reliability and reliability-based sensitivity of basic design variables in mechanical reliability analysis and design.展开更多
基金Dalian Municipal Natural Science Foundation under Grant No.2019RD01。
文摘Economic losses and catastrophic casualties may occur once super high-rise structures are struck by low-probability but high-consequence scenarios of concurrent earthquakes and winds. Therefore, accurately predicting multi-hazard dynamic responses to super high-rise structures has significant engineering and scientific value. This study performed a parametric global sensitivity analysis (GSA) for multi-hazard dynamic response prediction of super high-rise structures using the multiple-degree-of-freedom shear (MFS) model. Polynomial chaos Kriging (PCK) was introduced to build a surrogate model that allowed GSA to be combined with Sobol’ indices. Monte Carlo simulation (MCS) is also conducted for the comparison to verify the accuracy and efficiency of the PCK method. Parametric sensitivity analysis is performed for a wide range of aleatory uncertainty (intensities of coupled multi-hazard), epistemic uncertainty (bending stiffness, k_(m);shear stiffness, kq;density, ρ;and damping ratio, ξ), probability distribution types, and coefficients of variation. The results indicate that epistemic uncertainty parameters, k_(m), ρ, and ξ dramatically affect the multi-hazard dynamic responses of super high-rise structures;in addition, Sobol’ indices between the normal and lognormal distributions are insignificant, while the variation levels have remarkably influenced the sensitivity indices.
基金supported by the National Natural Science Foundation of China(No.52175269)the Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金Natural Science Foundation of Jilin Province of China(No.20210101052JC)Science and Technology Research Project of Education Department of Jilin Province(JJKH20231146KJ,JJKH20241262KJ)China Postdoctoral Science Foundation(2024M751086).
文摘Flexible pressure sensors have excellent prospects in applications of human-machine interfaces,artificial intelligence and human health monitoring due to their bendable and lightweight characteristics compared to rigid pressure sensors.However,arising from the limited compressibility of soft materials and the hardening of microstructures at the device interface,there is always a trade-off between high sensitivity and broad sensing range for most flexible pressure sensors,which results in a gradual saturation response and limits their practical applications.Herein,inspired by the distinct pressure perception function of crocodile receptors,a highly sensitive and wide-range flexible pressure sensor with multiscale microdomes and interlocked architecture is developed via a facile PS-decorated molding method.Combined with interlocked architecture,the multiscale dome-shaped structured interface enhances the compressibility of the material through structural complementarity,increases the contact area between functional materials,which compensates for the stiffness induced by the deformation of dense microscale columns.This effectively mitigates structural hardening across a wide pressure range,leading to the overall high performance of the sensor.As a result,the obtained sensor exhibits a low detection limit of 5 Pa,a high sensitivity of 6.14 kPa^(-1),a wide measurement range up to 231 kPa,short response/recovery time of 56 ms/69 ms,outstanding stability over 10,000 cycles.Considering these excellent properties,the sensor shows promising potential in health monitoring,human-computer interaction,wearable electronics.This study presents a strategy for the fabrication of flexible pressure sensors exhibiting high sensitivity and a wide pressure response range.
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.15JK1573)the Postgraduate Innovation and Practice Ability Development Fund of Xi’an Shiyou University (No.YCS21211084)。
文摘We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject supported by Shenghua Yuying Project of Central South University,China
文摘The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscopy. The results show that with the decrease of quenching rate from 960 ℃/s to 2 ℃/s, the hardness after aging is decreased by about 33% for the homogenized and solution heat treated alloy(H-alloy) with large equiaxed grains and about 43% for the extruded and solution heat treated alloy(E-alloy) with elongated grains and subgrains. Cr-containing dispersoids make contribution to about 33% decrement in hardness of the H-alloy due to slow quenching; while in the E-alloy, the amount of(sub) grain boundaries is increased by about one order of magnitude, which leads to a further 10% decrement in hardness due to slow quenching and therefore higher quench sensitivity.
基金financially supported by the National Key R&D Program of China (2022YFE0197100, 2023YFB4603500)Shenzhen Science and Technology Innovation Commission (KQTD20190929172505711)+1 种基金supported by MOE SUTD Kickstarter initiative (SKI2021_02_16)Singapore Ministry of Education academic research grant Tier 2 (MOE-T2EP50121-0007).
文摘Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.
基金supported by the National Natural Science Foundation of China(52175270)the Project of Scientifc and Technological Development Plan of Jilin Province(20220508130RC)+3 种基金the Science and Technology Development Program of Jilin Province(YDZJ202501ZYTS370)the Scientific Research Project of Education Department of Jilin Province(JJKH20251196KJ)the Scientific Research Project of Education Department of Jilin Province(JJKH20251195KJ)the Key Project of State Key Laboratory of Changchun City(23GZZ14).
文摘Flexible piezoresistive sensors based on biomimetic microstructures are prospective for broad application in motion monitoring.However,the design and preparation processes of most biomimetic microstructures in the existing studies are complicated,and there are few studies on pore size control.Herein,the porous structure of human bones was used as a biomimetic prototype,and optimally designed by creating a theoretical equivalent sensor model and a finite element model.Soluble raw materials such as sugar and salt in different particle sizes were pressed into porous templates.Based on the template method,porous structures in different pore sizes were prepared using polydimethylsiloxane(PDMS)polymer as the substrate.On this basis,graphene oxide conductive coating was prepared with the modified Hummers method and then deposited via dip coating onto the substrate.Finally,a PDMS-based porous structure biomimetic flexible piezoresistive sensor was developed.Mechanically,the deformation of the sensor under the same load increased with the pore size rising from 0.3 to 1.5 mm.Electrically,the resistance rang of the sensor was enlarged as the pore size rose.The resistance variation rates of samples with pore sizes of 0.3,1.0,and 1.5 mm at approximately the 200th cycle were 63%,79%,and 81%,respectively;at the 500th cycle,these values were 63%,77%,and 79%;and at the 1000th cycle,they stabilized at 63%,74%,and 76%.These results indicate that the fabricated sensor exhibits high stability and fatigue resistance.At the pressure of 0–25 kPa,the sensitivity rose from 0.0688 to 0.1260 kPa−1,and the performance was enhanced by 83%.After 1,000 cycles of compression testing,the signal output was stable,and no damage was caused to the substrate.Further application tests showed the biomimetic sensor accurately and effectively identified human joint motions and gestures,and has potential application value in human motion monitoring.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51705132)the Science and Technology Department of Henan Province Natural Science Project (Grant No. 172102210215)+1 种基金Henan Postdoctoral Foundation, doctoral Foundation (2016BS008)the Education Department of Henan Province Natural Science Project (Grant No. 17A460008)
文摘High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.
基金National Key Research and Development Program of China under Grant No.2016YFC0701106Natural Sciences and Engineering Research Council of Canada via Discovery under Grant No.NSERC RGPIN-2017-05556 Li
文摘The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.
基金Zhejiang Normal University for providing the financial support (YS304320035, YS304320036, ZZ323205020521005039)Financial support from the National Natural Science Foundation of China (NSFC, 21606199)+1 种基金the Science and Technology Department of Zhejiang Province (LGG20B060004)the National Key Research and Development Program of China (2021YFA1501800, 2021YFA1501801, 2021YFA1501802) are also gratefully acknowledged。
文摘A systematic study on the structure sensitivity,host effect,and the deactivation mechanism of Ircatalyzed selective hydrogenation of 1,3-butadiene,a key process in the purification of alkadiene for the upgrading of C4 cut,is presented by coupling steady-state catalytic testing,in-depth characterization,kinetic evaluation,and density functional theory calculations.We reveal that:(i) 1,3-Butadiene hydrogenation on iridium is structure-sensitive with the optimal particle size of about 2 nm,and the H_(2) dissociation energy is a reliable activity descriptor;(ii) The nature of the NC hosts exerts a critical impact on the catalytic performance,and balanced nitrogen content and speciation seem key for the optimized performance;and (iii) Different deactivation mechanisms occur:fouling by coke deposition on the catalysts with a high N:C ratio (>1),and site blockage due to the competitive adsorption between 1-butene/cis-2-butene and 1,3-butadiene.These molecular insights provide valuable guidelines for the catalyst design in selective hydrogenations.
基金Project supported by the 985-Engineering Innovation of Graduate Students of Jilin Universitythe Science and Technology Development Foundation of Jilin Province(20070541)
文摘This paper presents methods for computing a second-order sensitivity matrix and the Hessian matrix of eigenvalues and eigenvectors of multiple parameter structures. Second-order perturbations of eigenvalues and eigenvectors are transformed into multiple parameter forms,and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors are developed.With these formulations,the efficient methods based on the second-order Taylor expansion and second-order perturbation are obtained to estimate changes of eigenvalues and eigenvectors when the design parameters are changed. The presented method avoids direct differential operation,and thus reduces difficulty for computing the second-order sensitivity matrices of eigenpairs.A numerical example is given to demonstrate application and accuracy of the proposed method.
基金financially supported by the National Key Research and Development Program of China(No.2022YFA1205300 and No.2022YFA1205304)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD103).
文摘Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.
基金the Jihua Laboratory Scientific Research Project(No.X210291TL210)the National Natural Science Foundation of China(No.51971215).
文摘The high strength and stability of the full-lamellar structure guarantee the industrial application of theβ-solidifyingγ-TiAl alloys.However,it is a huge challenge to design an alloy with good hot-deformability as well as the full-lamellar structure.The low-cost Ti-42.5Al-2Mn-0.4Mo-0.1B-0.1C(at.%)alloy was designed,which undergoes bothβandαsingle-phase region during the solidification.It is found that the full-lamellar structure can be obtained by the solution heat treatment at 1230℃ for 20 min and then aging treatment at 800℃ for 3 h.Interestingly,a new microstructure,namely,the pearlitic-like microstructure(PM)induced by theα_(2)/γ→βo+γcellular reaction was observed when the aging temperature is increased to above 800℃.The volume fraction of the PM is gradually increased from 0%to 25.5%,65%,and 94%according to elevated aging temperature from 800 to 900,1000,and 1050℃,respectively.The mechanism of the reducedα_(2)/γlamellae and PM formation was discussed regarding the heterogeneous distribution ofβstabilizing elements and the interface energy stored inα_(2)/γlamellae.
文摘Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag.This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow.Reynolds-Averaged Navier-Stokes(RANS)equations with a Shear Stress Transport(SST)turbulence model are employed to simulate the intricate jet flow interaction.Through utilizing a Non-Intrusive Polynomial Chaos(NIPC)method to construct surrogates,a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern.Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter.It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics.The jet-to-freestream total-pressure ratio,jet Mach number,and freestream Mach number are the major contributors to variation in surface pressure,demonstrating an evident location-dependent behavior.The penetration length of injection,reattachment angle of the shear layer,and aerodynamic drag are also most sensitive to the three crucial parameters above.In comparison,the contributions of freestream temperature,freestream density,and jet total temperature are nearly negligible.
基金Supported by the National Natural Science Foundation of China(50378041)the Program for New Century Excellent Talents of Ministry of Educationof China (2004)
文摘The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金supported by a fellowship from Design Department of Taisei Corporation。
文摘Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events.
基金Supported by the General Plan Projects of Science and Technology of Jiangxi Provincial Department of Education(GJJ151161,GJJ180976)the Plan Projects of Science and Technology of Jiangxi Provincial Department of Science and Technology(20161BBE50053)the Foundation of the Center of Collaboration and Innovation(18XTKFYB03)
文摘As the supporting supplier of the main engine plant, the general air filter manufacturers have insufficient technical reserves. The structural optimization of air filter is often based on the bench experiment, which has high implementation cost and poor performance. In view of this, taking computational fluid dynamics(CFD) as the basic technical means, an optimization design method based on parametric sensitivity combined with equidistant search was proposed. Specifically, the sensitivity of local structure parameters to pressure loss was analyzed by taking local structure of air filter as the object. According to the sensitivity, the method of equidistant search was used to optimize the parameters in order, so as to achieve the goal of overall optimization. After optimization, the pressure loss decreased by 45.13% and the effect was remarkable.
文摘With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.
基金supported by Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT0816)Key National Science & Technology Special Project on "High-Grade CNC Machine Tools and Basic Manufacturing Equipments" of China (Grant No. 2010ZX04014-014)+1 种基金National Natural Science Foundation of China (Grant No. 50875039)Key Projects in National Science & Technology Pillar Program during the 11th Five-year Plan Period of China (Grant No. 2009BAG12A02-A07-2)
文摘The correlation coefficients of random variables of mechanical structures are generally chosen with experience or even ignored,which cannot actually reflect the effects of parameter uncertainties on reliability.To discuss the selection problem of the correlation coefficients from the reliability-based sensitivity point of view,the theory principle of the problem is established based on the results of the reliability sensitivity,and the criterion of correlation among random variables is shown.The values of the correlation coefficients are obtained according to the proposed principle and the reliability sensitivity problem is discussed.Numerical studies have shown the following results:(1) If the sensitivity value of correlation coefficient ρ is less than(at what magnitude 0.000 01),then the correlation could be ignored,which could simplify the procedure without introducing additional error.(2) However,as the difference between ρs,that is the most sensitive to the reliability,and ρR,that is with the smallest reliability,is less than 0.001,ρs is suggested to model the dependency of random variables.This could ensure the robust quality of system without the loss of safety requirement.(3) In the case of |Eabs|ρ0.001 and also |Erel|ρ0.001,ρR should be employed to quantify the correlation among random variables in order to ensure the accuracy of reliability analysis.Application of the proposed approach could provide a practical routine for mechanical design and manufactory to study the reliability and reliability-based sensitivity of basic design variables in mechanical reliability analysis and design.