期刊文献+
共找到563,332篇文章
< 1 2 250 >
每页显示 20 50 100
改进自适应VMD和TLS-ESPRIT的风电系统次/超同步振荡参数辨识 被引量:2
1
作者 李文博 钱伟荣 +3 位作者 李淑蓉 沙鹏程 邓军波 张冠军 《高电压技术》 北大核心 2025年第1期146-157,I0013-I0017,共17页
为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决... 为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决定分解模态数和带宽,结合最小二乘-旋转不变技术(total least square-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)对分解出的振荡分量进行参数辨识,无需另外使用降噪算法。通过复合信号测试法、PSCAD/EMTDC电磁暂态仿真法验证了所提方法的有效性。最后,将所提方法与改进Prony算法、MCEEMD法在不同噪声水平和振荡频率下进行对比,结果表明,所提方法能够有效地抑制原始信号的噪声干扰,对耦合的次/超同步振荡信号分解更加准确,参数辨识结果可靠性较高,对风电系统振荡溯源、改善系统阻尼具有一定的参考意义。 展开更多
关键词 SSSO 改进VMD 损失总熵 tls-ESPRIT 模态混叠
原文传递
基于TLS数据的落叶松–水曲柳混交林单木因子提取及树高模型构建研究 被引量:1
2
作者 崔译今 贾炜玮 +2 位作者 王帆 郭昊天 李丹丹 《西南林业大学学报(自然科学)》 北大核心 2025年第2期142-150,共9页
以孟家岗林场1 hm^(2)落叶松水与曲柳混交林样地为研究对象,利用等株径级标准木法把林木分为优势木、平均木、被压木3个等级,然后以人工实测值作为参考值,分别分析利用TLS提取2种树种的3种等级木单木因子的精度,最后采用TLS数据提取的... 以孟家岗林场1 hm^(2)落叶松水与曲柳混交林样地为研究对象,利用等株径级标准木法把林木分为优势木、平均木、被压木3个等级,然后以人工实测值作为参考值,分别分析利用TLS提取2种树种的3种等级木单木因子的精度,最后采用TLS数据提取的单木因子构建树高模型。筛选出2种树种最优基础树高模型,并进一步评价和比较以林木分级为哑变量构建的树高模型。结果表明:针对本研究选取的水落混交林样地,点云数据与实测数据单木匹配结果中,落叶松匹配精度为92.79%,水曲柳为92.25%;2个树种的胸径提取精度达到97%以上,且胸径提取精度优势木>平均木>被压木,2个树种的树高提取精度达到95%以上,落叶松树高提取精度平均木>优势木>被压木;水曲柳树高提取精度优势木>平均木>被压木。使用TLS数据构建的基础树高模型中,拟合落叶松效果最好的是Logistic模型(R^(2)=0.783 0、RMSE=1.951 6),拟合水曲柳效果最好的是Gompertz模型(R^(2)=0.724 8、RMSE=1.953 6),因此以Logistic模型、Gompertz模型分别为2个树种基于TLS数据构建的最优基础模型,最后2个树种采用以林木分级为哑变量构建的模型R^(2)分别为0.790 7、0.731 2。TLS技术对水落混交林样地单木匹配率很高,单木因子提取精度较好,基于TLS数据所构建的以林木分级为哑变量的模型,在预测树木高度和胸径的生长差异方面表现优于基础模型,具有更好的预测精度和适应性,可以为该地区水落混交林的林业经营提供参考。 展开更多
关键词 落叶松 水曲柳 混交林 地基激光雷达 树高 哑变量模型
在线阅读 下载PDF
大型地下洞室的TLS点云变形监测研究
3
作者 王浩帆 李彪 +3 位作者 李涛 肖培伟 钱洪建 徐奴文 《测绘通报》 北大核心 2025年第8期76-82,共7页
大型地下洞室中变形控制不及时可能会对人员安全和工程进度构成严重威胁,对地下洞室进行变形监测对于预防工程灾害具有重要意义。为解决大型地下洞室工程中变形监测效率低且信息不全面的问题,本文提出了一种基于TLS点云的变形观测技术... 大型地下洞室中变形控制不及时可能会对人员安全和工程进度构成严重威胁,对地下洞室进行变形监测对于预防工程灾害具有重要意义。为解决大型地下洞室工程中变形监测效率低且信息不全面的问题,本文提出了一种基于TLS点云的变形观测技术。该技术包括结合RANSAC Shape Detection算法与曲面变化量的半自动点云降噪处理,以及基于M3C2算法的洞室表面变形计算,实现了大型地下洞室变形全面、高效的监测。应用该技术对旭龙电站主厂房典型区域支护变形进行监测,发现在施工频繁阶段Yc0+140—Yc0+170区间,下游侧拱座存在明显变形条带,且该结果与现场传统变形监测结果一致。观测结果为大型地下洞室变形控制提供了更为全面的三维变形信息,并提高了变形监测的效率。 展开更多
关键词 大型地下洞室 旭龙水电站 tls点云 表面变形 点云降噪
原文传递
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts 被引量:1
4
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
5
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Copper complexes of anthrahydrazone bearing pyridyl side chain:Synthesis,crystal structure,anticancer activity,and DNA binding 被引量:1
6
作者 HUANG Yao WU Yingshu +5 位作者 BAO Zhichun HUANG Yue TANG Shangfeng LIU Ruixue LIU Yancheng LIANG Hong 《无机化学学报》 北大核心 2025年第1期213-224,共12页
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp... To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2. 展开更多
关键词 anthrahydrazone metal complex crystal structure anticancer activity cell apoptosis
在线阅读 下载PDF
基于干形拟合的TLS长白落叶松树干参数提取
7
作者 杨晨辉 程寿民 +2 位作者 高谢雨 董利虎 郝元朔 《林业科学》 北大核心 2025年第8期154-163,共10页
【目的】提出一种干形控制的树干缺失部分重建方法,解决利用地面激光雷达扫描技术(TLS)进行林业调查时因树枝和相邻树木遮挡导致树木上部点云扫描不完整以及树高、树干直径等参数提取精度降低的问题,为实现非破坏性测量材积和生物量以... 【目的】提出一种干形控制的树干缺失部分重建方法,解决利用地面激光雷达扫描技术(TLS)进行林业调查时因树枝和相邻树木遮挡导致树木上部点云扫描不完整以及树高、树干直径等参数提取精度降低的问题,为实现非破坏性测量材积和生物量以及评估森林资源、监测森林健康状况提供参考。【方法】选取黑龙江省佳木斯市孟家岗林场内不同立地条件和龄组的138株人工长白落叶松为对象,利用TLS获取点云数据,伐倒后进行树干解析。对点云进行拼接、裁剪、去噪后,采用迭代随机抽样一致算法(RANSAC)圆形拟合提取单木树干点云,并应用最小二乘法拟合树干不同高度处直径作为干形数据;通过实测树干解析数据构建混合效应削度方程模型,以拟合得到的参数估计值为已知量,以树高和随机效应参数为待估参数,对TLS提取的干形数据进行逐树拟合,基于拟合得到的模型重建树干缺失部分。根据拟合模型提取树高、干形和立木材积,并与未重建的原始提取结果进行对比。【结果】与直接从TLS数据中提取的树高和树干直径相比,树干重建后参数提取精度更高,尤其在树高估计方面误差显著降低,平均偏差和均方根误差百分比分别降低8.09%和7.48%;对于树干直径提取,重建后提取到的直径比例有所提升,但精度差异不显著;在立木材积估算方面,树干重建前后均能保持较高精度,采用平均断面积区分求积法估算重建树干前后材积差异不显著,利用二元材积方程方法使材积估算的相对均方根误差降低4.5%。【结论】采用削度方程树干重建方法能够还原TLS中树干缺失部分,且可显著提高TLS单木树高的提取精度,为提高TLS在森林参数估算中的应用精度及林业调查效率提供了新的思路和理论支持。 展开更多
关键词 地面激光雷达扫描技术 削度方程 枝干分离 树干重建
在线阅读 下载PDF
基于有监督自编码器的TLS加密异常流量检测
8
作者 杨明芬 甘昀 张兴鹏 《计算机工程》 北大核心 2025年第9期192-200,共9页
随着用户对隐私保护意识的增强,越来越多的网站和服务使用传输层安全(TLS)协议来保护用户数据,这导致TLS加密流量在网络传输流量中的占比越来越高。但目前大多数异常流量检测方法是针对所有流量或所有加密流量的通用检测模型,而专门研究... 随着用户对隐私保护意识的增强,越来越多的网站和服务使用传输层安全(TLS)协议来保护用户数据,这导致TLS加密流量在网络传输流量中的占比越来越高。但目前大多数异常流量检测方法是针对所有流量或所有加密流量的通用检测模型,而专门研究TLS加密流量的方法较少。因此,提出一种基于有监督自编码器的TLS加密异常流量检测方法。该方法的核心是训练一个有监督自编码器,其将网络流量作为输入,生成与输入流量维度相同的重构流量,并要求正常流量与对应的重构流量之间相似度极高,异常流量与重构流量之间相似度极低。为达到上述重构要求,设计一个重构损失函数来有监督地优化自编码器内部参数。在检测阶段,利用自编码器的重构能力,通过衡量输入流量与重构流量之间的余弦相似度来判断输入流量是否为异常流量。此外,通过整合数据构建一个专门用于TLS加密异常流量检测任务的数据集,在此数据集上的实验结果表明,该方法在TLS加密异常流量检测二分类任务上的准确率达到99.52%,优于其他对比模型,同时多种可视化策略展现了所提方法的有效性。 展开更多
关键词 tls加密 自编码器 异常流量检测 重构损失 可视化分析
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
9
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Characterization and Analysis of Abnormal Grain Structures in WSTi6421 Titanium Alloy AfterβAnnealing Treatment 被引量:1
10
作者 Wang Wensheng Liu Xianghong +5 位作者 Wang Haipeng Wang Kaixuan Tian Yanwen Yan Jianchuan Li Yulu Chen Haisheng 《稀有金属材料与工程》 北大核心 2025年第2期354-362,共9页
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si... As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing. 展开更多
关键词 WSTi6421 titanium alloy βannealing abnormal grain structure
原文传递
Research review of the mechanism and clinical application prospects of tertiary lymphoid structures in the immune micro-environment of gastrointestinal tumors
11
作者 JIANG ZHU 《Oncology Research》 2025年第7期1571-1580,共10页
Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggrega... Changes in the intestinal immune micro-environment of the gastrointestinal tract are indispensable in the occurrence and development of gastrointestinal cancer.Tertiary lymphoid structure(TLS)is an immune cell aggregation structure found around gastrointestinal cancer in recent years.More and more research proves that tertiary lymphoid structure plays a key biological role and clinical value in disease progression,patient prognosis,and adjuvant treatment.This review aims to explore the research progress,biological significance,and potential clinical applications of TLSs in gastrointestinal tumors.The formation,development,and interaction of TLSs with tumor microenvironment have been reviewed and analyzed in recent years.Meanwhile,this review not only evaluates the clinical value of TLSs as prognostic biomarkers and predictors of treatment response but also explores their role in guiding the formulation of immunotherapy strategies for gastrointestinal tumors.In addition,this review points out the main problems in the current research of TLSs and looks forward to their future development,especially their broad application prospects in the diagnosis,treatment,and prognostic evaluation of gastrointestinal tumors. 展开更多
关键词 Tertiary Lymphoid structures(tls) Gastrointestinal tumors
暂未订购
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
12
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures Structural paranmeters
原文传递
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
13
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure 被引量:2
14
作者 Yanting Wang He Han +2 位作者 Huiyang Bian Yanjun Li Zhichao Lou 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期631-644,共14页
The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through ... The rapid development of 5G communication technology and smart electronic and electrical equipment will inevitably lead to electromagnetic radiation pollution.Enriching heterointerface polarization relaxation through nanostructure design and interface modifica-tion has proven to be an effective strategy to obtain efficient electromagnetic wave absorption.Here,this work implements an innovative method that combines biomimetic honeycomb superstructure to constrain hierarchical porous heterostructure composed of Co/CoO nano-particles to improve the interfacial polarization intensity.The method effectively controlled the absorption efficiency of Co^(2+)through de-lignification modification of bamboo,and combined with the bionic carbon-based natural hierarchical porous structure to achieve uniform dispersion of nanoparticles,which is conducive to the in-depth construction of heterogeneous interfaces.In addition,the multiphase struc-ture brought about by high-temperature pyrolysis provides the best dielectric loss and impedance matching for the material.Therefore,the obtained bamboo-based Co/CoO multiphase composite showed excellent electromagnetic wave absorption performance,achieving excel-lent reflection loss(RL)of-79 dB and effective absorption band width of 4.12 GHz(6.84-10.96 GHz)at low load of 15wt%.Among them,the material’s optimal radar cross-section(RCS)reduction value can reach 31.9 dB·m^(2).This work provides a new approach to the micro-control and comprehensive optimization of macro-design of microwave absorbers,and offers new ideas for the high-value utiliza-tion of biomass materials. 展开更多
关键词 biomass honeycomb porous heterojunction structure interfacial polarization electromagnetic wave absorption
在线阅读 下载PDF
Janus structure design of polyimide composite foam for absorption-dominated EMI shielding and thermal insulation 被引量:2
15
作者 Ruixing Hao Yaqi Yang +3 位作者 Peiyou He Yaqing Liu Guizhe Zhao Hongji Duan 《Journal of Materials Science & Technology》 2025年第3期317-326,共10页
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom... In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft. 展开更多
关键词 Electromagnetic interference shielding(EMI) Thermal insulation POLYIMIDE Janus structure Low reflection
原文传递
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
16
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers Polymer network
原文传递
Customizing solid electrolyte interphase with bilayer spatial structure to mitigate swelling towards long-term life lithium battery 被引量:1
17
作者 Dongni Zhao Hongcheng Liang +6 位作者 Shumin Wu Yin Quan Xinyi Hu Jingni Li Peng Wang Xiaoling Cui Shiyou Li 《Journal of Energy Chemistry》 2025年第6期702-712,I0015,共12页
The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the ra... The swelling behavior and stability in solid electrolyte interphase(SEI)have been proved to determine the battery cycle life.A high swollen,unstable SEI shows a high permeability to electrolyte,which results in the rapid battery performance degradation.Here,we customize two SEIs with different spatial structures(bilayer and mosaic)by simply regulating the proportion of additive fluoroethylene carbonate.Surprisingly,due to the uniform distribution of dense inorganic nano-crystals in the inner,the bilayer SEI exhibits low-swelling and excellent mechanical properties,so the undesirable side reactions of the electrolyte are effectively suppressed.In addition,we put forward the growth rate of swelling ratio(GSR)as a key indicator to reveal the swelling change in SEI.The GSR of bilayer SEI merely increases from1.73 to 3.16 after the 300th cycle,which enables the corresponding graphite‖Li battery to achieve longer cycle stability.The capacity retention is improved by 47.5% after 300 cycles at 0.5 C.The correlation among SEI spatial structure,swelling behavior,and battery performance provides a new direction for electrolyte optimization and interphase structure design of high energy density batteries. 展开更多
关键词 Lithium battery SEI film Spatial structure Swelling behavior Cycle-stable
在线阅读 下载PDF
Deciphering environmental factors influencing phytoplankton community structure in a polluted urban river 被引量:2
18
作者 Xiaxia Li Kai Chen +7 位作者 Chao Wang Tianyu Zhuo Hongtao Li Yong Wu Xiaohui Lei Ming Li Bin Chen Beibei Chai 《Journal of Environmental Sciences》 2025年第2期375-386,共12页
Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing... Tuojiang River Basin is a first-class tributary of the upper reaches of the Yangtze River—which is the longest river in China.As phytoplankton are sensitive indicators of trophic changes inwater bodies,characterizing phytoplankton communities and their growth influencing factors in polluted urban rivers can provide new ideas for pollution control.Here,we used direct microscopic count and environmental DNA(eDNA)metabarcoding methods to investigate phytoplankton community structure in Tuojiang River Basin(Chengdu,Sichuan Province,China).The association between phytoplankton community structure and water environmental factors was evaluated by Mantel analysis.Additional environmental monitoring data were used to pinpoint major factors that influenced phytoplankton growth based on structural equation modeling.At the phylum level,the dominant phytoplankton taxa identified by the conventional microscopic method mainly belonged to Bacillariophyta,Chlorophyta,and Cyanophyta,in contrast with Chlorophyta,Dinophyceae,and Bacillariophyta identified by eDNA metabarcoding.Inα-diversity analysis,eDNA metabarcoding detected greater species diversity and achieved higher precision than the microscopic method.Phytoplankton growth was largely limited by phosphorus based on the nitrogen-to-phosphorus ratios>16:1 in all water samples.Redundancy analysis and structural equation modeling also confirmed that the nitrogen-to-phosphorus ratio was the principal factor influencing phytoplankton growth.The results could be useful for implementing comprehensive management of the river basin environment.It is recommended to control the discharge of point-and surface-source pollutants and the concentration of dissolved oxygen in areas with excessive nutrients(e.g.,Jianyang-Ziyang).Algae monitoring techniques and removal strategies should be improved in 201 Hospital,Hongrihe Bridge and Colmar Town areas. 展开更多
关键词 Environmental DNA Microscopic count Phytoplankton growth Structural equation modeling Tuojiang River Basin
原文传递
High-burn-up structure evolution in polycrystalline UO_(2):Phase-field modeling investigation 被引量:1
19
作者 Dan Sun Yanbo Jiang +4 位作者 Chuanbao Tang Yong Xin Zhipeng Sun Wenbo Liu Yuanming Li 《Chinese Physics B》 2025年第2期378-386,共9页
Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is p... Understanding the evolution of microstructures in nuclear fuels under high-burn-up conditions is critical for extending fuel refueling cycles and enhancing nuclear reactor safety.In this study,a phase-field model is proposed to examine the evolution of high-burn-up structures in polycrystalline UO_(2).The formation and growth of recrystallized grains were initially investigated.It was demonstrated that recrystallization kinetics adhere to the Kolmogorov–Johnson–Mehl–Avrami(KJMA)equation,and that recrystallization represents a process of free-energy reduction.Subsequently,the microstructural evolution in UO_(2) was analyzed as the burn up increased.Gas bubbles acted as additional nucleation sites,thereby augmenting the recrystallization kinetics,whereas the presence of recrystallized grains accelerated bubble growth by increasing the number of grain boundaries.The observed variations in the recrystallization kinetics and porosity with burn-up closely align with experimental findings.Furthermore,the influence of grain size on microstructure evolution was investigated.Larger grain sizes were found to decrease porosity and the occurrence of high-burn-up structures. 展开更多
关键词 high-burn-up structure phase field uranium dioxide gas bubble RECRYSTALLIZATION
原文传递
Revealing Hetero-Deformation Induced(HDI)Hardening and Dislocation Activity in a Dual-Heterostructure Magnesium Matrix Composite 被引量:1
20
作者 Lingling Fan Ran Ni +7 位作者 Lingbao Ren Peng Xiao Ying Zeng Dongdi Yin Hajo Dieringa Yuanding Huang Gaofeng Quan Wei Feng 《Journal of Magnesium and Alloys》 2025年第2期902-921,共20页
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca... Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites. 展开更多
关键词 Mg-matrix composite Heterogeneous structure HDI hardening GND density DISLOCATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部