The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multi...The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multipleα-particle events was designed and constructed.The detector comprises two layers of double-sided silicon strip detectors(DSSD)and a cesium iodide scintillator array coupled with silicon photomultipliers array as light sensors,which has the advantages of their small size,fast response,and large dynamic range.DSSDs coupled with cesium iodide crystal arrays are used to distinguish multipleαhits.The detector array has a compact and integrated design that can be adapted to different experimental conditions.The detector array was simulated using Geant4,and the excitation energy spectra of someα-clustering nuclei were reconstructed to demonstrate the performance.The simulation results show that the detector array has excellent angular and energy resolutions,enabling effective reconstruction of the nuclear excited state by multipleαparticle events.This detector offers a new and powerful tool for nuclear physics experiments and has the potential to discover interesting physical phenomena related to exotic nuclear structures and their decay mechanisms.展开更多
A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,...A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.展开更多
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materi...This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.展开更多
Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin s...Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).展开更多
The structure and electronic properties of Co_(2)Ge_(10)^(-)anion and its neutral counterpart were investigated by anion photoelectron spectroscopy and theoretical calculations.The experimental vertical detachment ene...The structure and electronic properties of Co_(2)Ge_(10)^(-)anion and its neutral counterpart were investigated by anion photoelectron spectroscopy and theoretical calculations.The experimental vertical detachment energy of Co_(2)Ge_(10)^(-)was measured to be 2.86±0.08 eV.The lowest-energy isomer of Co_(2)Ge_(10)^(-)is in a doublet state and has a cage-like structure with Cs symmetry,which can be constructed by a tetragonal bipyramid on top of a pentagonal bipyramid and these two bipyramid structures share a common Co atom.The most stable structure of neutral Co_(2)Ge_(10)resembles its anionic counterpart and it is in a triplet state.The natural population analysis showed that the inner Co atom of both the anionic and neutral Co_(2)Ge_(10)acquires negative charge from the neighboring Ge atoms.The outer Co atom has a larger spin moment than the inner Co atom,indicating that the magnetic moments of Co_(2)Ge_(10)^(-/0)are mainly contributed by the outer Co atom.Analyses of the density of states and molecular orbitals indicated that there are a few highly delocalized molecular orbitals in Co_(2)Ge_(10)^(-),which are mainly contributed by Ge 4s atomic orbitals.展开更多
Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on t...Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.展开更多
Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilaye...Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilayer La_(3)Ni_(2)O_(7)electronic structure.Applying the hybrid exchange–correlation functionals,we obtain a more accurate electronic structure of La_(3)Ni_(2)O_(7)at its high-pressure phase,where the bonding dz2 band is below the Fermi level owing to the apical oxygen.The symmetry properties of this electronic structure and its corresponding tight-binding model are further analyzed.We find that the antisymmetric part is highly entangled,leading to a minimal nearly degenerate two-orbital model.Then,the apical oxygen vacancies effect is studied using the dynamical cluster approximation.This disorder effect strongly destroys the antisymmetric b Fermi surface,leading to the possible disappearance of superconductivity.展开更多
Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still r...Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still remains a great challenge.In this work,Fe atom clusters(Fe_(AC))modified by high-density Cu single atoms(Cu_(SA))in a N,S-doped porous carbon substrate(Fe_(AC)/Cu_(SA)@NCS)is reported for enhanced ORR electrocatalysis.Fe_(AC)/Cu_(SA)@NCS exhibits excellent ORR performance with a half-wave potential(E_(1/2))of 0.911 V,a high four-electron process selectivity and excellent stability.The ORR performance is also verified in the Fe_(AC)/Cu_(SA)@NCS-based Zn-air battery,which shows a high peak power density of 192.67 mW cm^(-2),a higher specific capacity of 808.3 mAh g^(-1)and impressive charge-discharge cycle stability.Moreover,density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters,reducing the energy barrier of the rate-determining step(i.e.,*OH desorption)on Fe_(AC)/Cu_(SA)@NCS.This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.展开更多
Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clus...Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clusters stabilized by cyclohexanethiol(HSC_(6)H_(11))ligands.Using electrospray ionization mass spectrometry(ESI-MS)and single-crystal X-ray diffraction(SXRD),structures of the Pd clusters ranging from Pd4(SC_(6)H_(11))8 to Pd18(SC_(6)H_(11))36 were determined.This analysis revealed a structure evolution from polygonal to elliptical geometries of the PdnS2n frameworks as the cluster size increased.UV-Vis-NIR spectroscopy,combined with quantum chemical calculations,elucidated changes in the electronic structure of the clusters.Catalytic studies on the Sonogashira cross-coupling reactions demonstrated a size-dependent decline in activity attributed to variations in structural arrangements and electronic properties.Mechanistic insights proposed a distinctive Pd(Ⅱ)-Pd(Ⅳ)catalytic cycle.This research underscores how ligands and cluster size influence the structures and properties of Pd clusters,offering valuable insights for the future design and application of Pd clusters in advanced catalysis and beyond.展开更多
Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their se...Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.展开更多
Switchable radiative cooling/heating holds great promise for mitigating the global energy and environmental crisis.Here,we reported a cost-effective,high-strength Janus film through surface optical engineering waste p...Switchable radiative cooling/heating holds great promise for mitigating the global energy and environmental crisis.Here,we reported a cost-effective,high-strength Janus film through surface optical engineering waste paper with one side decorated by a hydrophobic polymeric cooling coating consisting of micro/nanopore/particle hierarchical structure and the other side coated with hydrophilic MXene nanosheets for heating.The cooling surface demonstrates high solar reflectivity(96.3%)and infrared emissivity(95.5%),resulting in daytime/nighttime sub-ambient radiative cooling of 6℃/8℃with the theoretical cooling power of 100.6 and 138.5Wm^(−2),respectively.The heating surface exhibits high solar absorptivity(83.7%)and low infrared emissivity(15.2%),resulting in excellent radiative heating capacity for vehicle charging pile(~6.2℃)and solar heating performance.Impressively,the mechanical strength of Janus film increased greatly by 563%compared with that of pristine waste paper,which is helpful for its practical applications in various scenarios for switchable radiative thermal management through mechanical flipping.Energy-saving simulation results reveal that significant total energy savings of up to 32.4MJm^(−2) can be achieved annually(corresponding to the 12.4%saving ratio),showing the immense importance of reducing carbon footprint and promoting carbon neutrality.展开更多
Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density f...Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density functional theory accounting for spin-orbit coupling.These compounds are computed to be semiconductors.The calculated gap values make ScNiBi and YNiBi valid for thermoelectric and optoelectronic applications and as selective filters.In ScNiBi and YNiBi,an intense peak at the energy of−2 eV is composed of theNi 3d states in the conduction band,and the valence band mostly contains these states with some contributions from the Bi 6p and Sc 3d or Y 4d electronic states.These states participate in the formation of the indirect gap of 0.16 eV(ScNiBi)and 0.18 eV(YNiBi).Within the spectral ellipsometry technique in the interval 0.22–15μm of wavelength,the optical functions of materials are studied,and their dispersion features are revealed.A good matching of the experimental and modeled optical conductivity spectra allowed us to analyze orbital contributions.The abnormally low optical absorption observed in the low-energy region of the spectrum is referred to as the results of band calculations indicating a small density of electronic states near the Fermi energy of these complex materials.展开更多
We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of sin...We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are ...Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS.展开更多
In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. He...In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. Here, we report such an example and following up by modifying the solvothermal reaction conditions (temperature and time) it is possible to isolate the high mass species in crystalline form. [Zn_(4)L_(4)Cl_(4)] (Zn_(4)L_(4), L = N-methylbenzimidazole-2-methanolate) has a boat-like Zn_(4)O_(4) core but electrospray ionization mass spectrometry (ESI-MS) of the solution of its crystals shows higher mass peaks of Zn_(5)L_(5), Zn_(5)L_(6) and Zn_(6)L_(6) species. Thus, both disassembly and reassembly are highly probable processes. Consequently, [Zn(HL)_(2)Cl_(2)] (Zn1, L = N-methylbenzimidazole-2-methanolate), [Zn_(4)L_(6)Cl_(2)] (Zn_(4)L_(6), L = N-methylbenzimidazole-2-methanolate) and [Zn_(6)L_(6)Cl_(4)(CH_(3)O)_(2)] (Zn_(6)L_(6), L = N-methylbenzimidazole-2-methanolate) were prepared. The results of multistage ESI-MS of their dissolved crystals led to a proposed mechanism of their formation in the gas phase as follows: [Zn_(3)L_(4)] through [ZnL] → [ZnL(HL)] → [Zn(HL)_(2)] → [Zn_(2)L] → [Zn_(2)L_(2)] → [Zn_(2)L_(3)]. The mechanism was derived in conjunction with Gibbs free energies calculated using DFT of the fragments observed in the ESI-MS of Zn_(4)L_(4), Zn_(4)L_(6) and Zn_(6)L_(6). This work reveals the complex of chemical reactions, involving fragmentation and unexpected combination, under mass spectrometry condition which allows one to synthesize the observed transients, leading to mechanism of formation by correlation of solid-state/solution structural information.展开更多
The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured l...The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.展开更多
A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction g...A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.展开更多
The original version of this article unfortunately missed the link of Supplementary Material which contains the single crystal structure(CCDC 2131877)and data details.We are sorry for any inconvenience caused.DOI of o...The original version of this article unfortunately missed the link of Supplementary Material which contains the single crystal structure(CCDC 2131877)and data details.We are sorry for any inconvenience caused.DOI of original article:https://doi.org/10.1016/j.cclet.2023.108340.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金National Natural Science Foundation(Nos.U1832129 and 11975210)Youth Innovation Promotion Association CAS(No.2017309)。
文摘The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multipleα-particle events was designed and constructed.The detector comprises two layers of double-sided silicon strip detectors(DSSD)and a cesium iodide scintillator array coupled with silicon photomultipliers array as light sensors,which has the advantages of their small size,fast response,and large dynamic range.DSSDs coupled with cesium iodide crystal arrays are used to distinguish multipleαhits.The detector array has a compact and integrated design that can be adapted to different experimental conditions.The detector array was simulated using Geant4,and the excitation energy spectra of someα-clustering nuclei were reconstructed to demonstrate the performance.The simulation results show that the detector array has excellent angular and energy resolutions,enabling effective reconstruction of the nuclear excited state by multipleαparticle events.This detector offers a new and powerful tool for nuclear physics experiments and has the potential to discover interesting physical phenomena related to exotic nuclear structures and their decay mechanisms.
基金financial support from the National Natural Science Foundation of China(Nos.52104306,52274301,52334009)the Aeronautical Science Foundation of China(No.2023Z0530S6005)+3 种基金the National Key Research and Development Program of China(No.2023YFB3712401)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Academician Workstation of Kunming University of Science and Technology(2024),the Ningbo Yongjiang Talent-Introduction Programme(No.2022A-023-C)the Zhejiang Phenomenological Materials Technology Co.,Ltd.,China.
文摘A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.
文摘This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors(AlX,X=N,P,As,Sb)and indium-based semiconductors(InX,X=N,P,As,Sb)as potential materials for optical devices.Band structure calculations reveal that,except for InSb,all other compounds are direct bandgap semiconductors,with AlN exhibiting a bandgap of 3.245 eV.The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X.In contrast,the conduction band minimum is influenced by all orbitals,with a predominant contribution from the p-orbitals.The static dielectric constant increased with the expansion of the unit cell volume.Compared to AlX and InX with larger X atoms,AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance.Regarding mechanical properties,AlN and InN displayed greater shear and bulk modulus than the other compounds.Moreover,among these eight crystal types,a higher modulus was associated with a lower light loss function value,indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
基金supported by the National Key R&D Program of China(2023YFC3304600).
文摘Existing multi-view deep subspace clustering methods aim to learn a unified representation from multi-view data,while the learned representation is difficult to maintain the underlying structure hidden in the origin samples,especially the high-order neighbor relationship between samples.To overcome the above challenges,this paper proposes a novel multi-order neighborhood fusion based multi-view deep subspace clustering model.We creatively integrate the multi-order proximity graph structures of different views into the self-expressive layer by a multi-order neighborhood fusion module.By this design,the multi-order Laplacian matrix supervises the learning of the view-consistent self-representation affinity matrix;then,we can obtain an optimal global affinity matrix where each connected node belongs to one cluster.In addition,the discriminative constraint between views is designed to further improve the clustering performance.A range of experiments on six public datasets demonstrates that the method performs better than other advanced multi-view clustering methods.The code is available at https://github.com/songzuolong/MNF-MDSC(accessed on 25 December 2024).
基金supported by the National Natural Science Foundation of China(Nos.92461313,12074387,and 92161114)the Innovation Capability Support Program of Shaanxi Province(No.2023-CX-TD-49).
文摘The structure and electronic properties of Co_(2)Ge_(10)^(-)anion and its neutral counterpart were investigated by anion photoelectron spectroscopy and theoretical calculations.The experimental vertical detachment energy of Co_(2)Ge_(10)^(-)was measured to be 2.86±0.08 eV.The lowest-energy isomer of Co_(2)Ge_(10)^(-)is in a doublet state and has a cage-like structure with Cs symmetry,which can be constructed by a tetragonal bipyramid on top of a pentagonal bipyramid and these two bipyramid structures share a common Co atom.The most stable structure of neutral Co_(2)Ge_(10)resembles its anionic counterpart and it is in a triplet state.The natural population analysis showed that the inner Co atom of both the anionic and neutral Co_(2)Ge_(10)acquires negative charge from the neighboring Ge atoms.The outer Co atom has a larger spin moment than the inner Co atom,indicating that the magnetic moments of Co_(2)Ge_(10)^(-/0)are mainly contributed by the outer Co atom.Analyses of the density of states and molecular orbitals indicated that there are a few highly delocalized molecular orbitals in Co_(2)Ge_(10)^(-),which are mainly contributed by Ge 4s atomic orbitals.
基金supported by the National Natural Science Foundation of China(No.51974212)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+2 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Postdoctor Project of Hubei Province(No.2024HBBHCXA074)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04).
文摘Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.NSFC-12494590,NSFC-12174428,and NSFC-12274279)the New Cornerstone Investigator Programthe Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.2022YSBR-048).
文摘Determining the electronic structure of La_(3)Ni_(2)O_(7)is an essential step towards uncovering its superconducting mechanism.It is widely believed that the bilayer apical oxygens play an important role in the bilayer La_(3)Ni_(2)O_(7)electronic structure.Applying the hybrid exchange–correlation functionals,we obtain a more accurate electronic structure of La_(3)Ni_(2)O_(7)at its high-pressure phase,where the bonding dz2 band is below the Fermi level owing to the apical oxygen.The symmetry properties of this electronic structure and its corresponding tight-binding model are further analyzed.We find that the antisymmetric part is highly entangled,leading to a minimal nearly degenerate two-orbital model.Then,the apical oxygen vacancies effect is studied using the dynamical cluster approximation.This disorder effect strongly destroys the antisymmetric b Fermi surface,leading to the possible disappearance of superconductivity.
基金financially supported by the National Natural Science Foundation of China(No.22278042)the National Natural Science Foundation of Jiangsu Province(No.BK20240567)+2 种基金the Introduction and Cultivation of Leading Innovative Talents Foundation of Changzhou,Jiangsu Province(No.CQ20220093)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJD530001)the Open Project Program of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science(No.M2024-7),MOE
文摘Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still remains a great challenge.In this work,Fe atom clusters(Fe_(AC))modified by high-density Cu single atoms(Cu_(SA))in a N,S-doped porous carbon substrate(Fe_(AC)/Cu_(SA)@NCS)is reported for enhanced ORR electrocatalysis.Fe_(AC)/Cu_(SA)@NCS exhibits excellent ORR performance with a half-wave potential(E_(1/2))of 0.911 V,a high four-electron process selectivity and excellent stability.The ORR performance is also verified in the Fe_(AC)/Cu_(SA)@NCS-based Zn-air battery,which shows a high peak power density of 192.67 mW cm^(-2),a higher specific capacity of 808.3 mAh g^(-1)and impressive charge-discharge cycle stability.Moreover,density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters,reducing the energy barrier of the rate-determining step(i.e.,*OH desorption)on Fe_(AC)/Cu_(SA)@NCS.This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.
基金supported by the Start-Up Research Funding of Fujian Normal University(No.Y0720326K13)the National Natural Science Foundation of China(Nos.22103035 and 22033005)+2 种基金the National Key R&D Program of China(No.2022YFA1503900)Shenzhen Science and Technology Program(No.RCYX20231211090357078)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002).
文摘Atomically precise palladium(Pd)clusters are emerging as versatile nanomaterials with applications in catalysis and biomedicine.This study explores the synthesis,structure evolution,and catalytic properties of Pd clusters stabilized by cyclohexanethiol(HSC_(6)H_(11))ligands.Using electrospray ionization mass spectrometry(ESI-MS)and single-crystal X-ray diffraction(SXRD),structures of the Pd clusters ranging from Pd4(SC_(6)H_(11))8 to Pd18(SC_(6)H_(11))36 were determined.This analysis revealed a structure evolution from polygonal to elliptical geometries of the PdnS2n frameworks as the cluster size increased.UV-Vis-NIR spectroscopy,combined with quantum chemical calculations,elucidated changes in the electronic structure of the clusters.Catalytic studies on the Sonogashira cross-coupling reactions demonstrated a size-dependent decline in activity attributed to variations in structural arrangements and electronic properties.Mechanistic insights proposed a distinctive Pd(Ⅱ)-Pd(Ⅳ)catalytic cycle.This research underscores how ligands and cluster size influence the structures and properties of Pd clusters,offering valuable insights for the future design and application of Pd clusters in advanced catalysis and beyond.
基金support provided by Science Foundation Ireland Frontiers for the Future Programme,21/FFP-P/10090.
文摘Curved geostructures,such as tunnels,are commonly encountered in geotechnical engineering and are critical to maintaining structural stability.Ensuring their proper performance through field monitoring during their service life is essential for the overall functionality of geotechnical infrastructure.Distributed Brillouin sensing(DBS)is increasingly applied in geotechnical projects due to its ability to acquire spatially continuous strain and temperature distributions over distances of up to 150 km using a single optical fibre.However,limited by the complex operations of distributed optic fibre sensing(DFOS)sensors in curved structures,previous reports about exploiting DBS in geotechnical structural health monitoring(SHM)have mostly been focused on flat surfaces.The lack of suitable DFOS installation methods matched to the spatial characteristics of continuous monitoring is one of the major factors that hinder the further application of this technique in curved structures.This review paper starts with a brief introduction of the fundamental working principle of DBS and the inherent limitations of DBS being used on monitoring curved surfaces.Subsequently,the state-of-the-art installation methods of optical fibres in curved structures are reviewed and compared to address the most suitable scenario of each method and their advantages and disadvantages.The installation challenges of optical fibres that can highly affect measurement accuracy are also discussed in the paper.
基金National Natural Science Foundation of China,Grant/Award Number:52003248Henan Province Youth Health Science and Technology Innovation Talent Training Program,Grant/Award Number:YQRC2023007+1 种基金Henan Province Excellent Youth Science Fund,Grant/Award Number:242300421064Joint Fund Predominant Discipline Cultivation Project of Henan Province,Grant/Award Number:232301420036.
文摘Switchable radiative cooling/heating holds great promise for mitigating the global energy and environmental crisis.Here,we reported a cost-effective,high-strength Janus film through surface optical engineering waste paper with one side decorated by a hydrophobic polymeric cooling coating consisting of micro/nanopore/particle hierarchical structure and the other side coated with hydrophilic MXene nanosheets for heating.The cooling surface demonstrates high solar reflectivity(96.3%)and infrared emissivity(95.5%),resulting in daytime/nighttime sub-ambient radiative cooling of 6℃/8℃with the theoretical cooling power of 100.6 and 138.5Wm^(−2),respectively.The heating surface exhibits high solar absorptivity(83.7%)and low infrared emissivity(15.2%),resulting in excellent radiative heating capacity for vehicle charging pile(~6.2℃)and solar heating performance.Impressively,the mechanical strength of Janus film increased greatly by 563%compared with that of pristine waste paper,which is helpful for its practical applications in various scenarios for switchable radiative thermal management through mechanical flipping.Energy-saving simulation results reveal that significant total energy savings of up to 32.4MJm^(−2) can be achieved annually(corresponding to the 12.4%saving ratio),showing the immense importance of reducing carbon footprint and promoting carbon neutrality.
文摘Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density functional theory accounting for spin-orbit coupling.These compounds are computed to be semiconductors.The calculated gap values make ScNiBi and YNiBi valid for thermoelectric and optoelectronic applications and as selective filters.In ScNiBi and YNiBi,an intense peak at the energy of−2 eV is composed of theNi 3d states in the conduction band,and the valence band mostly contains these states with some contributions from the Bi 6p and Sc 3d or Y 4d electronic states.These states participate in the formation of the indirect gap of 0.16 eV(ScNiBi)and 0.18 eV(YNiBi).Within the spectral ellipsometry technique in the interval 0.22–15μm of wavelength,the optical functions of materials are studied,and their dispersion features are revealed.A good matching of the experimental and modeled optical conductivity spectra allowed us to analyze orbital contributions.The abnormally low optical absorption observed in the low-energy region of the spectrum is referred to as the results of band calculations indicating a small density of electronic states near the Fermi energy of these complex materials.
基金supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.15JK1573)the Postgraduate Innovation and Practice Ability Development Fund of Xi’an Shiyou University (No.YCS21211084)。
文摘We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
基金jointly supported by the National Key Research and Development Program of China(2022YFC3104304)the National Natural Science Foundation of China(Grant No.41876011)+1 种基金the 2022 Research Program of Sanya Yazhou Bay Science and Technology City(SKJC-2022-01-001)the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ265)。
文摘Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS.
基金supported by the BAGUI Talent Program in Guangxi Province(No.2019AC26001),and the National Natural Science Foundation of China(No.22171075,U23A2080).
文摘In mass spectrometry, fragments with a mass higher than the original molecular ion provide valuable insights into the molecular structure and can guide the assembly and disassembly processes for chemical synthesis. Here, we report such an example and following up by modifying the solvothermal reaction conditions (temperature and time) it is possible to isolate the high mass species in crystalline form. [Zn_(4)L_(4)Cl_(4)] (Zn_(4)L_(4), L = N-methylbenzimidazole-2-methanolate) has a boat-like Zn_(4)O_(4) core but electrospray ionization mass spectrometry (ESI-MS) of the solution of its crystals shows higher mass peaks of Zn_(5)L_(5), Zn_(5)L_(6) and Zn_(6)L_(6) species. Thus, both disassembly and reassembly are highly probable processes. Consequently, [Zn(HL)_(2)Cl_(2)] (Zn1, L = N-methylbenzimidazole-2-methanolate), [Zn_(4)L_(6)Cl_(2)] (Zn_(4)L_(6), L = N-methylbenzimidazole-2-methanolate) and [Zn_(6)L_(6)Cl_(4)(CH_(3)O)_(2)] (Zn_(6)L_(6), L = N-methylbenzimidazole-2-methanolate) were prepared. The results of multistage ESI-MS of their dissolved crystals led to a proposed mechanism of their formation in the gas phase as follows: [Zn_(3)L_(4)] through [ZnL] → [ZnL(HL)] → [Zn(HL)_(2)] → [Zn_(2)L] → [Zn_(2)L_(2)] → [Zn_(2)L_(3)]. The mechanism was derived in conjunction with Gibbs free energies calculated using DFT of the fragments observed in the ESI-MS of Zn_(4)L_(4), Zn_(4)L_(6) and Zn_(6)L_(6). This work reveals the complex of chemical reactions, involving fragmentation and unexpected combination, under mass spectrometry condition which allows one to synthesize the observed transients, leading to mechanism of formation by correlation of solid-state/solution structural information.
文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。
文摘The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.
基金Supported by the National Natural Science Foundation of China under Grant No 61334008the National High-Technology Research and Development Program of China under Grant No 2015AA016904the Instrument Developing Project of the Chinese Academy of Sciences under Grant No YZ201301
文摘A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.
文摘The original version of this article unfortunately missed the link of Supplementary Material which contains the single crystal structure(CCDC 2131877)and data details.We are sorry for any inconvenience caused.DOI of original article:https://doi.org/10.1016/j.cclet.2023.108340.