Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level st...Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level stemming from the doped rare earth ion or intrinsic defects to the electronic structure of the host,and therefore thermoluminescence measurement becomes a radical technology in studying trap depth,which is one of the significant parameters that determine the properties of persistent luminescence and photostimulated luminescence.However,the results of trap depth obtained by different thermoluminescence methods are quite different so that they are not comparable.Herein,we analyzed different thermoluminescence methods,selected and improved the traditional peak position method of T_(m)/500 to be E=(-0.94Inβ+30.09)kT_(m).Only the experimental heating rate(β)is needed additionally,but the accuracy is improved greatly in most cases.This convenient and accurate method will accelerate the discovery of novel rare earth-doped materials.展开更多
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con...In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.展开更多
Beauty trap is a kind of traditional stratagem originating from ancient times.This stratagem is a type of strategic deception,making full use of human’s desires and weaknesses.No matter whether you are a genius or a ...Beauty trap is a kind of traditional stratagem originating from ancient times.This stratagem is a type of strategic deception,making full use of human’s desires and weaknesses.No matter whether you are a genius or a fool,you will have the opportunity to fall into a trap,especially if the trap is intended for you.Because of this characteristic,beauty trap was usually seen as a kind of effective non-military method,appearing in the war history of many different countries.With time going by,compared with its original form,this stratagem has greatly changed,developing many new forms.Some of them need to be adopted flexibly,combining with different kinds of psychological tactics.Except the field of military,this stratagem can also be seen in political struggles and commercial warfare.After coming to modern society,the beauty trap does not vanish.It seems that this stratagem will accompany the entire process of humanity,simply because the desires of humans will never disappear.展开更多
Natural products play a crucial role in new drug development,but their druggability is often limited by uncertain molecular targets and insufficient research on mechanisms of action.In this study,we developed a new RP...Natural products play a crucial role in new drug development,but their druggability is often limited by uncertain molecular targets and insufficient research on mechanisms of action.In this study,we developed a new RPL19-TRAP^(KI)-seq method,combining CRISPR/Cas9 and TRAP technologies,to investigate these mechanisms.We identified and validated seven ribosomal large subunit surface proteins suitable for TRAP,selecting RPL19 for its high enrichment.We successfully established a stable cell line expressing EGFP-RPL19 using CRISPR knock-in and verified its efficiency and specificity in enriching ribosomes and translating mRNA.Integrated with next-generation sequencing,this method allows precise detection of translating mRNA.We validated RPL19-TRAP^(KI)-seq by investigating rapamycin,an mTOR inhibitor,yielding results consistent with previous reports.This optimized TRAP technology provides an accurate representation of translating mRNA,closely reflecting protein expression levels.Furthermore,we investigated SBF-1,a 23-oxa-analog of natural saponin OSW-1 with significant anti-tumor activity but an unclear mechanism.Using RPL19-TRAP^(KI)-seq,we found that SBF-1 exerts its cytotoxic effects on tumor cells by disturbing cellular oxidative phosphorylation.In conclusion,our method has been proven to be a promising tool that can reveal the mechanisms of small molecules with greater accuracy,setting the stage for future exploration of small molecules and advancing the fields of pharmacology and therapeutic development.展开更多
We describe a three-dimensional(3D) magneto-optical trap(MOT) capable of simultaneously capturing ^(85)Rb and ^(133)Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combine...We describe a three-dimensional(3D) magneto-optical trap(MOT) capable of simultaneously capturing ^(85)Rb and ^(133)Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. We trapped ^(85)Rb and ^(133)Cs atoms using relatively low total power: 8 mW cooling and 4 mW repump for ^(85)Rb, and 7.5 mW cooling and 1.5 mW repump for ^(133)Cs. The number of trapped atoms was 1.6 × 10^(8) for ^(85)Rb and 1.4 × 10^(8) for ^(133)Cs. The optical depths were 3.71 for ^(85)Rb and 3.45 for ^(133)Cs. The temperature of trapped atoms was ~200 μK for ^(85)Rb and ~200 μK for ^(133)Cs. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Our vacuum system is also quite simple, avoiding much of the complexity typically encountered in similar dual-species systems. However, the red detuning of the cooling laser used for atomic trapping in our system is relatively small, leaving room for further optimization. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions.展开更多
Recently,large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation.They are the simplest systems for dynamical stability and parametric resonance.In this model,th...Recently,large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation.They are the simplest systems for dynamical stability and parametric resonance.In this model,the Mathieu equation plays the most fundamental role for us to understand the stability and instability of a single ion.In this work,we investigate the dynamics of trapped ions with the Coulomb interaction based on the Hamiltonian equation.We show that the many-body interaction will not influence the phase diagram for instability.Then,the dynamics of this model in the large damping limit will also be analytically calculated using few trapped ions.Furthermore,we find that in the presence of modulation,synchronization dynamics can be observed,showing an exchange of velocities between distant ions on the left side and on the right side of the trap.These dynamics resemble that of the exchange of velocities in Newton's cradle for the collision of balls at the same time.These dynamics are independent of their initial conditions and the number of ions.As a unique feature of the interacting Mathieu equation,we hope this behavior,which leads to a quasi-periodic solution,can be measured in current experimental systems.Finally,we have also discussed the effect of anharmonic trapping potential,showing the desynchronization during the collision process.It is hoped that the dynamics in this many-body Mathieu equation with damping may find applications in quantum simulations.This model may also find interesting applications in dynamics systems as a pure mathematical problem,which may be beyond the results in the Floquet theorem.展开更多
Background:Liver metastases are a leading contributor to death among patients with colorectal cancer.Current clinical treatments,such as resection and systemic chemotherapy,are only applicable in a portion of cases.Mo...Background:Liver metastases are a leading contributor to death among patients with colorectal cancer.Current clinical treatments,such as resection and systemic chemotherapy,are only applicable in a portion of cases.More effective medical interventions,including those involving traditional Chinese medicine,could be beneficial for patients with newly diagnosed colorectal cancer to prevent the progression to liver metastasis.Xiaoyaosan(XYS)is a classical prescription in traditional Chinese medicine with a history of hundreds of years.Despite its well-known protective effects against breast cancer,the understanding of its application in colorectal cancer metastases remains limited.The anti-metastasis mechanism of XYS remains to be elucidated.In this research,we explored the impact of XYS against liver metastases of colorectal cancer and its potential mechanisms.Methods:Thirty-six SPF male C57BL/6 mice were randomly assigned to six groups:a control group,a model group,a DNase I group,and three XYS treatment groups receiving high,medium,and low doses,respectively.A mouse model for colorectal cancer liver metastasis was established through the splenic injection of MC38 cells.Twenty-one days after the injection of cancer cells,the number of metastatic foci and the weights of the liver were calculated,and HE staining was performed to evaluate the effect of XYS.Neutrophil extracellular traps(NETs)formation in the liver was detected by immunofluorescence staining,and NETs formation in the serum was detected by ELISA.The levels of CXCL1,CXCL2,G-CSF,and HMGB1 were determined using ELISA kits.The expression levels of the proteins p-p38,p38,p-ERK,and ERK were assessed using Western blot analysis.Results:XYS treatment reduced the number of metastatic foci,the weights of metastatic livers,and the infiltration area of tumor-like cells.XYS could inhibit NETs formation in the liver and serum of mice with metastasis.The concentrations of CXCL1,CXCL2,G-CSF,and HMGB1 were significantly decreased in all XYS-treated groups.Moreover,XYS down-regulated the protein expression levels of phosphorylated p38 and ERK.Conclusion:XYS could attenuate liver metastases of colorectal cancer in vivo.The inhibitory mechanism of XYS may involve the reduction of NETs formation through the regulation of tumor-derived factors and the downstream MAPKs(p38,ERK)signaling pathway.展开更多
Precise control and measurement of nanoparticles using low-power optical tweezers are pivotal for advancing single-particle analysis,nanoscale sensing,and energy transport research.In this work,we present the tipassis...Precise control and measurement of nanoparticles using low-power optical tweezers are pivotal for advancing single-particle analysis,nanoscale sensing,and energy transport research.In this work,we present the tipassisted nanoparticle capture system that simultaneously achieves localized temperature probing and nanoparticle trapping,significantly lowering the required laser power input.Unlike traditional metal-tip plasmonic techniques that predominantly rely on intense electric field gradients,our approach employs a silicon nanotip under resonant laser excitation,uniquely integrating optical forces,thermophoretic forces,and interatomic interactions for stable nanoparticle confinement.This synergistic collaboration mechanism enables approximately a 42%reduction in laser power density compared to conventional bowtie nanoaperture methods.This experimental method achieved direct and simultaneous Raman-based measurements of localized thermal dynamics,providing new insights into nanoscale thermodynamics during optical trapping.Additionally,the silicon nanotip demonstrates reduced thermal transport due to its confined nanoscale geometry,aligning closely with our theoretical predictions.Our integrated strategy of efficient nanoparticle manipulation coupled with precise thermal probing not only enhances overall energy efficiency but also broadens the scope of potential applications in cutting-edge nanoscience and nanotechnology.展开更多
Neutrophil extracellular traps(NETs)have been the subject of research in the field of innate immunity since they were first described two decades ago.NETs are fibrous network structures released by neutrophils under s...Neutrophil extracellular traps(NETs)have been the subject of research in the field of innate immunity since they were first described two decades ago.NETs are fibrous network structures released by neutrophils under specific stimuli,including DNA,histones,and a variety of granular proteins.NETs have been widely studied in the fields of infectious and immune diseases,and new break-throughs have been made in the understanding of disease pathogenesis and treatment.In recent years,studies have found that NETs play an important role in the occurrence and development of osteoarticular diseases.This article reviews the progress in the research of NETs in common osteoarticular diseases such as rheumatoid arthritis,ankylosing spondylitis,gouty arthritis,osteonecrosis of the femoral head,osteoarthritis,and joint fibrosis,including the formation mecha-nism of NETs and its role in inflammation,joint destruction,pain and other pa-thological processes.The problems existing in current research are discussed,along with future research directions,to provide a reference for the in-depth study of osteoarticular diseases and the development of new treatment strategies.展开更多
Neutrophil extracellular traps(NET)have emerged as critical players in the pathogenesis of atherosclerosis and other cardiovascular diseases(CVD).These web-like structures,composed of DNA,histones,and granule proteins...Neutrophil extracellular traps(NET)have emerged as critical players in the pathogenesis of atherosclerosis and other cardiovascular diseases(CVD).These web-like structures,composed of DNA,histones,and granule proteins released by neutrophils,contribute significantly to both inflammation and thrombosis.This manuscript offers a comprehensive review of the recent literature on the involvement of NET in atherosclerosis,highlighting their interactions with various pathophysiological processes and their potential as biomarkers for CVD.Notably,the impact of radiation on NET formation is explored,emphasising how oxidative stress and inflammatory responses drive NET release,contributing to plaque instability.The role of histones,particularly citrullinated histones,in endothelial dysfunction and plaque progression is discussed,highlighting their significance in the pathophysiology of atherosclerosis.Furthermore,the complex relationship between lipoproteins and NET formation is examined,with a focus on how elevated low-density lipoprotein(LDL)and decreased high-density lipoprotein(HDL)levels facilitate NET release,thus promoting vascular inflammation and plaque instability.The influence of cholesterol on NET formation is also explored,underscoring its contribution to plaque development and stability.The role of Peptidylarginine deiminase 4(PAD4)in the regulation of NETosis is reviewed,with attention given to how PAD4-driven citrullination of histones affects atherosclerosis progression.Moreover,the manuscript examines the potential of NET components—such as double-stranded DNA,myeloperoxidase–DNA complexes,and citrullinated histone H3—as biomarkers for assessing disease severity and predicting adverse cardiovascular events,including ST-elevation myocardial infarction(STEMI)and stroke.Elevated levels of these biomarkers correlate with worse clinical outcomes,suggesting their utility in guiding therapeutic interventions.In contrast to the existing body of work,this review highlights the novelty of integrating recent findings on NET interactions with lipid metabolism,histone modifications,and PAD4 activity in the context of atherosclerosis.Overall,NET plays an integral role in the inflammatory and thrombotic processes underpinning atherosclerosis,and their components hold promise as both diagnostic markers and therapeutic targets in cardiovascular disease management.展开更多
The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeogr...The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).展开更多
We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the la...We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the laser beam contributing to MOT:a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams.The latter three regions are the effective regions of the grating chip.It is demonstrated that only three3.5 mm radius grating regions can produce a MOT that is capable of trapping 105atoms with a temperature below 150μK,retaining over 60%of atoms compared to a complete grating chip.This finding suggests that more than 60%of the grating chip area can be saved for other on-chip components,such as metasurfaces and nanophotonic devices,without significantly compromising MOT performance,paving the way for more compact and versatile atom–photon interfaces.展开更多
Scintillator is a key material for the development of X-ray detectors,which has a promising application in medical imaging,security inspection and industrial non-injury detection.The majority of scintillators currentl...Scintillator is a key material for the development of X-ray detectors,which has a promising application in medical imaging,security inspection and industrial non-injury detection.The majority of scintillators currently used in imaging are real-time imaging scintillators,which can cause ionization radiation damage to biological subjects or detection equipment during the imaging process and require complex,highly sensitive detection systems.Therefore,exploring stable,environmentally friendly scintillator materials that can achieve delayed imaging is of significance in the field of imaging.Herein,we devel-oped an X-ray time-lapse imaging scintillator,Sr_(2)Al_(6)O_(11):Dy^(3+)phosphor,which generates stable traps by X-ray irradiation,thus endowing it with excellent persistent luminescence and information storage properties(>42 d).Moreover,traps constructed by X-ray can be repeatedly refilled(>40 times)under UV light and carriers are released in theform of mechanical or thermal excitation when refilling is complete.By constructing the traps in the phosphor during X-ray excitation and using it for repetitive imaging,the detection limit is 74.78 nGy/s,and the spatial imaging resolution is as high as 16 lp/mm.This discovery providesa new idea for the development oftime-delayed X-ray scintillator.展开更多
The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves cru...The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.展开更多
Honey trap is a really common type of stratagem which can be seen in many fields such as military,politics,diplomacy,and business.You can easily find many examples of it in the historical books of many different count...Honey trap is a really common type of stratagem which can be seen in many fields such as military,politics,diplomacy,and business.You can easily find many examples of it in the historical books of many different countries.As time went by,because of the changes of human thinking,just relying on the beautiful appearance could not ensure the success of a honey trap.Therefore,there appeared a new type of honey trap called personality grooming.As a matter of fact,the original form of personality grooming appeared a few centuries ago.However,at the very beginning,personality grooming was not directly related to honey trap.It is an interesting feature of honey trap that its forms will change due to the changes of the times.In this process,honey trap and personality grooming gradually integrate,developing a new type of honey trap.Compared with the traditional ones,this type of honey trap is much harder to guard against.展开更多
Colorectal cancer(CRC)is a common malignant tumor worldwide,and its tumor microenvironment(TME)plays a crucial role in tumor progression.Neutrophil extracellular traps(NETs),as an important component of the TME,have r...Colorectal cancer(CRC)is a common malignant tumor worldwide,and its tumor microenvironment(TME)plays a crucial role in tumor progression.Neutrophil extracellular traps(NETs),as an important component of the TME,have received widespread attention in recent years.This article explores the biological functions and molecular mechanisms of NETs in CRC and their impact on disease progression,while analyzing the application of single-cell sequencing technology(SCS)in this field.The development of SCS provides a new perspective for understanding the role of NETs in CRC.By combining SCS technology,targeting key regulatory nodes of NETs is expected to reverse the immunosuppressive microenvironment and provide a theoretical basis for developing novel diagnostic biomarkers and targeted therapeutic strategies,thereby promoting the development of precision medicine in CRC and helping enhance patient prognosis.Future research should further explore the integration of SCS technology with complementary methodologies to investigate NETs and develop specific detection methods and therapeutic strategies targeting NETs to enhance early diagnosis and treatment efficacy of tumors.展开更多
Large-scale Danian-age(post-K/Pg boundary)Deccan magmatism is well known from the Mumbai metropolitan area,located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin.Thi...Large-scale Danian-age(post-K/Pg boundary)Deccan magmatism is well known from the Mumbai metropolitan area,located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin.This compositionally diverse late-Deccan magmatic suite contains subaerial tholeiitic lavas and dykes typical of the main Deccan province,with many features atypical of the Deccan,such as spilitic pillow lavas,“intertrappean”sediments(often containing considerable volcanic ash),rhyolitic lavas and tuffs,gabbro-granophyre intrusions,and trachyte intrusions containing alkali basalt enclaves.Most of these units,previously dated at 62.5 Ma to 61 Ma,are contemporaneous with or slightly postdate the 62.5 Ma India-Seychelles continental breakup and Panvel flexure formation.In the Dongri-Uttan area,two samples of a>50-m-thick,columnar-jointed rhyolite from the Darkhan Quarry and from a section behind the current Uttan Sagari Police Station have previously been dated at 62.6±0.6 Ma and 62.9±0.2 Ma(^(40)Ar/^(39)Ar,2r errors).New exposures reveal that these two statistically indistinguishable 40 Ar/39 Ar ages correspond to two distinct rhyolite units,separated by well-bedded silicic ash.The columnar rhyolites are microcrystalline,composed of quartz and alkali feldspar,with rare small(1–2 mm),altered feldspar phenocrysts,and no recognisable relict vitroclasts.Given the westerly structural dip,most of their lateral extent is submerged under the Arabian Sea,and we consider them to be possible flood rhyolite lavas.We interpret the ash beds,composed of pumice clasts and glass shards,as a low-grade(nonwelded)vitric ash,derived from a possibly distal Plinian eruption and deposited by fallout.The lavas and ash are peraluminous rhyolites.The lavas are Sr-Ba-poor and Rb-Zr-Nb-rich,and show“seagull-shaped”rare earth element patterns with deep negative europium anomalies.These crystal-poor lavas are“hot-dry-reduced”rhyolites typical of intraplate,continental rift and rifted margin settings.The very different high-field strength element contents of the lavas and the ash indicate compositionally distinct magma batches.The 62.5 Ma Dongri-Uttan sequence provides clear evidence for rapid silicic eruptions of effusive and explosive nature,alternating with each other and sourced from distinct magma chambers and eruptive vents.A newly identified,highly feldspar-phyric trachyte intrusion marks the last phase of magmatic activity in the area,corresponding with late-stage trachyte-syenite intrusions exposed in coastal western India and the Seychelles,and shows that the Mumbai rhyolites and trachytes form a compositional continuum.展开更多
基金Project supported by the National Natural Science Foundation of China(52372134,12274023)the Fundamental Re search Funds for the Central Universities(FRF-EYIT-23-04)。
文摘Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level stemming from the doped rare earth ion or intrinsic defects to the electronic structure of the host,and therefore thermoluminescence measurement becomes a radical technology in studying trap depth,which is one of the significant parameters that determine the properties of persistent luminescence and photostimulated luminescence.However,the results of trap depth obtained by different thermoluminescence methods are quite different so that they are not comparable.Herein,we analyzed different thermoluminescence methods,selected and improved the traditional peak position method of T_(m)/500 to be E=(-0.94Inβ+30.09)kT_(m).Only the experimental heating rate(β)is needed additionally,but the accuracy is improved greatly in most cases.This convenient and accurate method will accelerate the discovery of novel rare earth-doped materials.
基金financial supports from National Natural Science Foundation of China(62175023).
文摘In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.
文摘Beauty trap is a kind of traditional stratagem originating from ancient times.This stratagem is a type of strategic deception,making full use of human’s desires and weaknesses.No matter whether you are a genius or a fool,you will have the opportunity to fall into a trap,especially if the trap is intended for you.Because of this characteristic,beauty trap was usually seen as a kind of effective non-military method,appearing in the war history of many different countries.With time going by,compared with its original form,this stratagem has greatly changed,developing many new forms.Some of them need to be adopted flexibly,combining with different kinds of psychological tactics.Except the field of military,this stratagem can also be seen in political struggles and commercial warfare.After coming to modern society,the beauty trap does not vanish.It seems that this stratagem will accompany the entire process of humanity,simply because the desires of humans will never disappear.
基金supported by the National Key Research and Development Program of China(No.2022YFC2804800 to W.J.)the National Natural Science Foundation of China(No.22494704.,22137002 to Y.D.,92253305 to W.J.and 31971111 to C.L.)+6 种基金the Science and Technology Commission of Shanghai Municipality(Grant 20JC1410900 to Y.D.)the University Innovation Research Group in Chongqing(No.CXQT21016 to Y.D.)the Chongqing Talent Program Project(No.CQYC20200302119 to Y.D.)High-Level Innovation Platform Cultivation Plan of Chongqing(to Y.D.)Joint Fund of the Natural Science Innovation and Development Foundation of Chongqing(to Y.D.)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(to W.J.)Chongqing Doctoral Express Entry Project(No.CSTB2022BSXM-JCX0044 to J.H.).
文摘Natural products play a crucial role in new drug development,but their druggability is often limited by uncertain molecular targets and insufficient research on mechanisms of action.In this study,we developed a new RPL19-TRAP^(KI)-seq method,combining CRISPR/Cas9 and TRAP technologies,to investigate these mechanisms.We identified and validated seven ribosomal large subunit surface proteins suitable for TRAP,selecting RPL19 for its high enrichment.We successfully established a stable cell line expressing EGFP-RPL19 using CRISPR knock-in and verified its efficiency and specificity in enriching ribosomes and translating mRNA.Integrated with next-generation sequencing,this method allows precise detection of translating mRNA.We validated RPL19-TRAP^(KI)-seq by investigating rapamycin,an mTOR inhibitor,yielding results consistent with previous reports.This optimized TRAP technology provides an accurate representation of translating mRNA,closely reflecting protein expression levels.Furthermore,we investigated SBF-1,a 23-oxa-analog of natural saponin OSW-1 with significant anti-tumor activity but an unclear mechanism.Using RPL19-TRAP^(KI)-seq,we found that SBF-1 exerts its cytotoxic effects on tumor cells by disturbing cellular oxidative phosphorylation.In conclusion,our method has been proven to be a promising tool that can reveal the mechanisms of small molecules with greater accuracy,setting the stage for future exploration of small molecules and advancing the fields of pharmacology and therapeutic development.
基金Project supported by the National Key R&D Program of China (Grant No. 2022YFA1404002)the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011, and T2495253)+1 种基金the Anhui Initiative in Quantum Information Technologies (Grant No. AHY020200)the Major Science and Technology Projects in Anhui Province (Grant No. 202203a13010001)。
文摘We describe a three-dimensional(3D) magneto-optical trap(MOT) capable of simultaneously capturing ^(85)Rb and ^(133)Cs atoms. Unlike conventional setups, our system utilizes two separate laser systems that are combined before entering the vacuum chamber, enabling the simultaneous trapping of two different atomic species. We trapped ^(85)Rb and ^(133)Cs atoms using relatively low total power: 8 mW cooling and 4 mW repump for ^(85)Rb, and 7.5 mW cooling and 1.5 mW repump for ^(133)Cs. The number of trapped atoms was 1.6 × 10^(8) for ^(85)Rb and 1.4 × 10^(8) for ^(133)Cs. The optical depths were 3.71 for ^(85)Rb and 3.45 for ^(133)Cs. The temperature of trapped atoms was ~200 μK for ^(85)Rb and ~200 μK for ^(133)Cs. Our 3D MOT setup allows full horizontal optical access to the trapped atomic ensembles without spatial interference from the trapping or repump laser beams. Our vacuum system is also quite simple, avoiding much of the complexity typically encountered in similar dual-species systems. However, the red detuning of the cooling laser used for atomic trapping in our system is relatively small, leaving room for further optimization. This system offers a versatile platform for exploring complex phenomena in ultracold atom physics, such as Rydberg molecule formation and interspecies interactions.
基金supported by the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0301200,2021ZD0303200,and 2021ZD0301500)the Alliance of International Science Organizations(ANSO)。
文摘Recently,large-scale trapped ion systems have been realized in experiments for quantum simulation and quantum computation.They are the simplest systems for dynamical stability and parametric resonance.In this model,the Mathieu equation plays the most fundamental role for us to understand the stability and instability of a single ion.In this work,we investigate the dynamics of trapped ions with the Coulomb interaction based on the Hamiltonian equation.We show that the many-body interaction will not influence the phase diagram for instability.Then,the dynamics of this model in the large damping limit will also be analytically calculated using few trapped ions.Furthermore,we find that in the presence of modulation,synchronization dynamics can be observed,showing an exchange of velocities between distant ions on the left side and on the right side of the trap.These dynamics resemble that of the exchange of velocities in Newton's cradle for the collision of balls at the same time.These dynamics are independent of their initial conditions and the number of ions.As a unique feature of the interacting Mathieu equation,we hope this behavior,which leads to a quasi-periodic solution,can be measured in current experimental systems.Finally,we have also discussed the effect of anharmonic trapping potential,showing the desynchronization during the collision process.It is hoped that the dynamics in this many-body Mathieu equation with damping may find applications in quantum simulations.This model may also find interesting applications in dynamics systems as a pure mathematical problem,which may be beyond the results in the Floquet theorem.
基金supported by Sichuan Science and Technology Program(grant number 2023NSFSC1809)Hospital of Chengdu University of Traditional Chinese Medicine(grant number 23ZYTS1004,21YY01).
文摘Background:Liver metastases are a leading contributor to death among patients with colorectal cancer.Current clinical treatments,such as resection and systemic chemotherapy,are only applicable in a portion of cases.More effective medical interventions,including those involving traditional Chinese medicine,could be beneficial for patients with newly diagnosed colorectal cancer to prevent the progression to liver metastasis.Xiaoyaosan(XYS)is a classical prescription in traditional Chinese medicine with a history of hundreds of years.Despite its well-known protective effects against breast cancer,the understanding of its application in colorectal cancer metastases remains limited.The anti-metastasis mechanism of XYS remains to be elucidated.In this research,we explored the impact of XYS against liver metastases of colorectal cancer and its potential mechanisms.Methods:Thirty-six SPF male C57BL/6 mice were randomly assigned to six groups:a control group,a model group,a DNase I group,and three XYS treatment groups receiving high,medium,and low doses,respectively.A mouse model for colorectal cancer liver metastasis was established through the splenic injection of MC38 cells.Twenty-one days after the injection of cancer cells,the number of metastatic foci and the weights of the liver were calculated,and HE staining was performed to evaluate the effect of XYS.Neutrophil extracellular traps(NETs)formation in the liver was detected by immunofluorescence staining,and NETs formation in the serum was detected by ELISA.The levels of CXCL1,CXCL2,G-CSF,and HMGB1 were determined using ELISA kits.The expression levels of the proteins p-p38,p38,p-ERK,and ERK were assessed using Western blot analysis.Results:XYS treatment reduced the number of metastatic foci,the weights of metastatic livers,and the infiltration area of tumor-like cells.XYS could inhibit NETs formation in the liver and serum of mice with metastasis.The concentrations of CXCL1,CXCL2,G-CSF,and HMGB1 were significantly decreased in all XYS-treated groups.Moreover,XYS down-regulated the protein expression levels of phosphorylated p38 and ERK.Conclusion:XYS could attenuate liver metastases of colorectal cancer in vivo.The inhibitory mechanism of XYS may involve the reduction of NETs formation through the regulation of tumor-derived factors and the downstream MAPKs(p38,ERK)signaling pathway.
基金supported by the National Natural Science Foundation of China(Grant No.52206107)the National Key R&D Program of China(Grant No.2023YFE0120200)。
文摘Precise control and measurement of nanoparticles using low-power optical tweezers are pivotal for advancing single-particle analysis,nanoscale sensing,and energy transport research.In this work,we present the tipassisted nanoparticle capture system that simultaneously achieves localized temperature probing and nanoparticle trapping,significantly lowering the required laser power input.Unlike traditional metal-tip plasmonic techniques that predominantly rely on intense electric field gradients,our approach employs a silicon nanotip under resonant laser excitation,uniquely integrating optical forces,thermophoretic forces,and interatomic interactions for stable nanoparticle confinement.This synergistic collaboration mechanism enables approximately a 42%reduction in laser power density compared to conventional bowtie nanoaperture methods.This experimental method achieved direct and simultaneous Raman-based measurements of localized thermal dynamics,providing new insights into nanoscale thermodynamics during optical trapping.Additionally,the silicon nanotip demonstrates reduced thermal transport due to its confined nanoscale geometry,aligning closely with our theoretical predictions.Our integrated strategy of efficient nanoparticle manipulation coupled with precise thermal probing not only enhances overall energy efficiency but also broadens the scope of potential applications in cutting-edge nanoscience and nanotechnology.
基金Supported by 2024 Suining Health Science and Technology Plan Project,No.24ZDJB03.
文摘Neutrophil extracellular traps(NETs)have been the subject of research in the field of innate immunity since they were first described two decades ago.NETs are fibrous network structures released by neutrophils under specific stimuli,including DNA,histones,and a variety of granular proteins.NETs have been widely studied in the fields of infectious and immune diseases,and new break-throughs have been made in the understanding of disease pathogenesis and treatment.In recent years,studies have found that NETs play an important role in the occurrence and development of osteoarticular diseases.This article reviews the progress in the research of NETs in common osteoarticular diseases such as rheumatoid arthritis,ankylosing spondylitis,gouty arthritis,osteonecrosis of the femoral head,osteoarthritis,and joint fibrosis,including the formation mecha-nism of NETs and its role in inflammation,joint destruction,pain and other pa-thological processes.The problems existing in current research are discussed,along with future research directions,to provide a reference for the in-depth study of osteoarticular diseases and the development of new treatment strategies.
基金supported by NIH grants to MI Bukrinsky(R01NS124477 and P30AI117970)by the“Creation of Experimental Laboratories in the Natural Sciences Program”and Basic Research Programat Higher School of Economics University.
文摘Neutrophil extracellular traps(NET)have emerged as critical players in the pathogenesis of atherosclerosis and other cardiovascular diseases(CVD).These web-like structures,composed of DNA,histones,and granule proteins released by neutrophils,contribute significantly to both inflammation and thrombosis.This manuscript offers a comprehensive review of the recent literature on the involvement of NET in atherosclerosis,highlighting their interactions with various pathophysiological processes and their potential as biomarkers for CVD.Notably,the impact of radiation on NET formation is explored,emphasising how oxidative stress and inflammatory responses drive NET release,contributing to plaque instability.The role of histones,particularly citrullinated histones,in endothelial dysfunction and plaque progression is discussed,highlighting their significance in the pathophysiology of atherosclerosis.Furthermore,the complex relationship between lipoproteins and NET formation is examined,with a focus on how elevated low-density lipoprotein(LDL)and decreased high-density lipoprotein(HDL)levels facilitate NET release,thus promoting vascular inflammation and plaque instability.The influence of cholesterol on NET formation is also explored,underscoring its contribution to plaque development and stability.The role of Peptidylarginine deiminase 4(PAD4)in the regulation of NETosis is reviewed,with attention given to how PAD4-driven citrullination of histones affects atherosclerosis progression.Moreover,the manuscript examines the potential of NET components—such as double-stranded DNA,myeloperoxidase–DNA complexes,and citrullinated histone H3—as biomarkers for assessing disease severity and predicting adverse cardiovascular events,including ST-elevation myocardial infarction(STEMI)and stroke.Elevated levels of these biomarkers correlate with worse clinical outcomes,suggesting their utility in guiding therapeutic interventions.In contrast to the existing body of work,this review highlights the novelty of integrating recent findings on NET interactions with lipid metabolism,histone modifications,and PAD4 activity in the context of atherosclerosis.Overall,NET plays an integral role in the inflammatory and thrombotic processes underpinning atherosclerosis,and their components hold promise as both diagnostic markers and therapeutic targets in cardiovascular disease management.
基金funded by the“Departments of Excellence”program of the Italian Ministry for University and Research(MIUR,2018-2022 and MUR,2023-2027).
文摘The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).
基金Project supported by the National Key R&D Program of China(Grant Nos.2021YFA1402004 and 2021YFF0603701)the National Natural Science Foundation of China(Grant Nos.12134014,U21A20433,U21A6006,and 92265108)+1 种基金supported by the Fundamental Research Funds for the Central UniversitiesUSTC Research Funds of the Double First-Class Initiative。
文摘We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the laser beam contributing to MOT:a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams.The latter three regions are the effective regions of the grating chip.It is demonstrated that only three3.5 mm radius grating regions can produce a MOT that is capable of trapping 105atoms with a temperature below 150μK,retaining over 60%of atoms compared to a complete grating chip.This finding suggests that more than 60%of the grating chip area can be saved for other on-chip components,such as metasurfaces and nanophotonic devices,without significantly compromising MOT performance,paving the way for more compact and versatile atom–photon interfaces.
基金the National Natural Science Foundation of China(12364044)Yunnan Major Scientific and Technological Projects(202202AG050004,202202AG050016,202302AQ370003)+1 种基金the International Joint Innovation Platform of Yunnan Province(202203AP140004)the Outstanding Youth Project of Yunnan Province Applied Basic Research Project(202401AV070012).
文摘Scintillator is a key material for the development of X-ray detectors,which has a promising application in medical imaging,security inspection and industrial non-injury detection.The majority of scintillators currently used in imaging are real-time imaging scintillators,which can cause ionization radiation damage to biological subjects or detection equipment during the imaging process and require complex,highly sensitive detection systems.Therefore,exploring stable,environmentally friendly scintillator materials that can achieve delayed imaging is of significance in the field of imaging.Herein,we devel-oped an X-ray time-lapse imaging scintillator,Sr_(2)Al_(6)O_(11):Dy^(3+)phosphor,which generates stable traps by X-ray irradiation,thus endowing it with excellent persistent luminescence and information storage properties(>42 d).Moreover,traps constructed by X-ray can be repeatedly refilled(>40 times)under UV light and carriers are released in theform of mechanical or thermal excitation when refilling is complete.By constructing the traps in the phosphor during X-ray excitation and using it for repetitive imaging,the detection limit is 74.78 nGy/s,and the spatial imaging resolution is as high as 16 lp/mm.This discovery providesa new idea for the development oftime-delayed X-ray scintillator.
基金supports from the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286 and U2030208).
文摘The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials.
文摘Honey trap is a really common type of stratagem which can be seen in many fields such as military,politics,diplomacy,and business.You can easily find many examples of it in the historical books of many different countries.As time went by,because of the changes of human thinking,just relying on the beautiful appearance could not ensure the success of a honey trap.Therefore,there appeared a new type of honey trap called personality grooming.As a matter of fact,the original form of personality grooming appeared a few centuries ago.However,at the very beginning,personality grooming was not directly related to honey trap.It is an interesting feature of honey trap that its forms will change due to the changes of the times.In this process,honey trap and personality grooming gradually integrate,developing a new type of honey trap.Compared with the traditional ones,this type of honey trap is much harder to guard against.
基金the Shandong Province Medical and Health Science and Technology Development Plan Project,No.202203030713Yantai Science and Technology Program,No.2024YD005,No.2024YD007 and No.2024YD010and Science and Technology Program of Yantai Affiliated Hospital of Binzhou Medical University,No.YTFY2022KYQD06.
文摘Colorectal cancer(CRC)is a common malignant tumor worldwide,and its tumor microenvironment(TME)plays a crucial role in tumor progression.Neutrophil extracellular traps(NETs),as an important component of the TME,have received widespread attention in recent years.This article explores the biological functions and molecular mechanisms of NETs in CRC and their impact on disease progression,while analyzing the application of single-cell sequencing technology(SCS)in this field.The development of SCS provides a new perspective for understanding the role of NETs in CRC.By combining SCS technology,targeting key regulatory nodes of NETs is expected to reverse the immunosuppressive microenvironment and provide a theoretical basis for developing novel diagnostic biomarkers and targeted therapeutic strategies,thereby promoting the development of precision medicine in CRC and helping enhance patient prognosis.Future research should further explore the integration of SCS technology with complementary methodologies to investigate NETs and develop specific detection methods and therapeutic strategies targeting NETs to enhance early diagnosis and treatment efficacy of tumors.
基金supported by the research award project RI/0220-10000618-001 to Sheth from the Industrial Research and Consultancy Centre(IRCC)IIT Bombay.Shekhar and Astha were supported by Prime Minister’s Research Fellowships(PMRF,File Nos.1303100 and 1303103,respectively)+4 种基金Naik was initially supported by an IIT Bombay Institute Post-Doctoral Fellowship(File No.HR-1(HRM-1)/Rect/33/2022/20003002)subsequently by a Goa State Research Foundation Post-doctoral Fellowship(File No.PDF2024003)We express our sincere gratitude to Prof.N.Prabhakar for kindly granting us access to the WD-XRF spectrometry facility(SIP ProjectWBS Code:IN/22-1111039E-01)the ICP-MS facility,and the SERB-funded EPMA National Facility(IRPHA Grant No.IR/S4/ESF-16/2009(G))in the Department of Earth Sciences,IIT Bombay.
文摘Large-scale Danian-age(post-K/Pg boundary)Deccan magmatism is well known from the Mumbai metropolitan area,located in the structurally complex Panvel flexure zone along the western Indian rifted continental margin.This compositionally diverse late-Deccan magmatic suite contains subaerial tholeiitic lavas and dykes typical of the main Deccan province,with many features atypical of the Deccan,such as spilitic pillow lavas,“intertrappean”sediments(often containing considerable volcanic ash),rhyolitic lavas and tuffs,gabbro-granophyre intrusions,and trachyte intrusions containing alkali basalt enclaves.Most of these units,previously dated at 62.5 Ma to 61 Ma,are contemporaneous with or slightly postdate the 62.5 Ma India-Seychelles continental breakup and Panvel flexure formation.In the Dongri-Uttan area,two samples of a>50-m-thick,columnar-jointed rhyolite from the Darkhan Quarry and from a section behind the current Uttan Sagari Police Station have previously been dated at 62.6±0.6 Ma and 62.9±0.2 Ma(^(40)Ar/^(39)Ar,2r errors).New exposures reveal that these two statistically indistinguishable 40 Ar/39 Ar ages correspond to two distinct rhyolite units,separated by well-bedded silicic ash.The columnar rhyolites are microcrystalline,composed of quartz and alkali feldspar,with rare small(1–2 mm),altered feldspar phenocrysts,and no recognisable relict vitroclasts.Given the westerly structural dip,most of their lateral extent is submerged under the Arabian Sea,and we consider them to be possible flood rhyolite lavas.We interpret the ash beds,composed of pumice clasts and glass shards,as a low-grade(nonwelded)vitric ash,derived from a possibly distal Plinian eruption and deposited by fallout.The lavas and ash are peraluminous rhyolites.The lavas are Sr-Ba-poor and Rb-Zr-Nb-rich,and show“seagull-shaped”rare earth element patterns with deep negative europium anomalies.These crystal-poor lavas are“hot-dry-reduced”rhyolites typical of intraplate,continental rift and rifted margin settings.The very different high-field strength element contents of the lavas and the ash indicate compositionally distinct magma batches.The 62.5 Ma Dongri-Uttan sequence provides clear evidence for rapid silicic eruptions of effusive and explosive nature,alternating with each other and sourced from distinct magma chambers and eruptive vents.A newly identified,highly feldspar-phyric trachyte intrusion marks the last phase of magmatic activity in the area,corresponding with late-stage trachyte-syenite intrusions exposed in coastal western India and the Seychelles,and shows that the Mumbai rhyolites and trachytes form a compositional continuum.